Dynamic Deployment of a MapReduce Architecture in
the Cloud

Steve Loughran, Jose M. Alcaraz Calero, Andrew Farrell, Johannes Kirschnick, Julio Guijarro

Abstract—Recently cloud-based MapReduce services have appeared to process large data sets in the Cloud, significantly
reducing users’ infrastructure requirements. Almost all these services are Cloud vendor-specific and thus internally designed
within their own cloud infrastructure. This leads to two important limitations. Cloud vendors do not provide any clue about how
they manage the MapReduce architecture internally hampering its evaluation and also users are not able to either build their
own private cloud infrastructure based offering or to use different public cloud infrastructures for this purpose. Thus, this paper
describes an architecture which enables the dynamic deployment of a MapReduce architecture in virtual infrastructures provided
by either public or private cloud providers. This architecture has been implemented and validated as a proof of concept and

released to the community.

Index Terms—Automated Deployment, MapReduce, Cloud Computing, Infrastructure as a Service, Configuration Management

1 INTRODUCTION

HE processing of large data sets is becoming more and

more important in research and business environments.
Researchers are demanding tools to quickly process large
amounts of data and businesses are demanding new solu-
tions for data warehousing and business intelligent, using
large data sets. For these problems, the MapReduce [1]
programming model has demonstrated its value in many
scenarios. Probably, the most successful example is the
indexing system that produces the data structures used for
the Google [1] web search service.

The main challenge associated with processing large data
sets is the required infrastructure to carry out the pro-
cessing. Usually, the infrastructure demands large up-front
investments to cope with the highest anticipated workload
and this investment needs to be justified by the actual usage
of the platform. However, the demand for the processing
platform can be very fluctuating, creating times of over and
under utilization. Thus, Cloud computing can significantly
reduce the infrastructure capex, providing new business
models in which infrastructure providers provide on-demand
virtualized infrastructures in a pay-as-you go model. In this
new model, infrastructure can be dynamically adapted to
the data processing requirements of the infrastructure con-
sumer offering an elastic infrastructure for data processing.

Recently, some cloud providers started to provide services
for large data processing as part of their offerings, based on
the MapReduce programming model. A prominent example
is the Amazon Elastic MapReduce service. While MapReduce
as a service is an important advantage in the field of large
data processing, it exposes several limitations. Firstly, cloud

o .M. Alcaraz-Calero is with Department of Communications and Infor-
mation Engineering, University of Murcia, Computer Science Faculty,
Murcia, Spain, 30100.

E-mail: jmalcaraz@um.es

e S. Loughran,].M. Alcaraz-Calero, A. Farrell,]. Kirschnick and].
Guijarro are affiliated with the Cloud and Security Lab, Hewlett
Packard Laboratories, BS34 8QZ Bristol, United Kingdom.

E-mails: steve.loughran@hp.com, jose.alcaraz-calero@hp.com,
andrew.farrell@hp.com, johannes.kirschnick@hp.com,
julio.guijarro@hp.com

providers offer such services in a ready-to-use fashion (i.e.
as Platform-as-a-Service) and they do not provide any de-
tails about how this service is implemented and how it
works internally, e.g. how the deployment, configuration
and execution of MapReduce Jobs is carried out. This fact
hampers the evaluation of the efficiency of such services
and can be directly related to the hard task of developing
tools for deploying efficiently large distributed systems like
MapReduce. Secondly, clients do not have control over the
MapReduce software stack and its configuration, which
may lead to optimization, performance and compatibility
problems. Thirdly, these services are always vendor-specific
tailored to their own infrastructure, preventing clients to
use multiple cloud providers, their own private cloud in-
frastructure or even for offering their own Elastic Cloud-
based MapReduce service. Note that the usage of private
clouds can be especially relevant when sensible information
is processed, which is an open issue nowadays for public
clouds.

The main purpose of this paper is to describe an ar-
chitecture which enables the dynamic deployment of a
MapReduce architecture in virtual infrastructures provided
by either public or private cloud providers. This architec-
ture overcomes the previously described limitations since
it enables the usage of different combinations of public
and private cloud providers, exposes transparently how the
MapReduce service is managed and enables the customiza-
tion of such service. The deployment of the MapReduce
service is performed using SmartFrog [2], a configuration
management software which hides the complexity involved
in the MapReduce service provisioning whilst retaining the
full control over individual aspects of the service. Hadoop
is the MapReduce implementation used for validating the
architecture provided.

This paper is structured as follows. Section 2 introduces
the MapReduce programming model for processing large
data sets. After that, section 3 provides an introduction
to a suitable architecture for cloud infrastructure provider,
followed in section 4 by an overview of our architecture to
enable the dynamic provisioning of a MapReduce service
in such infrastructure provider. Implementation details are

described in section 5; Moreover, statistical results are pro-
vided in section 6. Related works of cloud services for data
management are discussed in section 7. Finally, we draw
conclusions in section 8.

2 MAPREDUCE PROGRAMMING MODEL

The MapReduce programming model [1] provides a frame-
work for process large data sets in parallel. Figure 1 pro-
vides a high level overview of the execution steps per-
formed by the framework.

Output File 1

Output File 2

|

— 1

Reduce Phase

<K2,vz>
=K2,V2>

<Kzve=
<K2V2>

=K2 V2> =K2 V2>

=K1 Vi=4
<K1V1>n

Distributed File System

Split Phase

Map-Reduce Execution Qverview Large Data Set

{Input File)

Figure 1. MapReduce Execution Overview

The initial large data set is split into processing chunks
according to a pre-defined split function, which defines
the elemental processing units, such as a database row,
a column, a line of a file. This function must generate
<key,value> pairs as in <position of the line in a file,
content of the line>.

Each result of the split is assigned to a worker. At this
stage, the workers are designated to perform the map phase.
Here the specified map function, provided by the developer,
produces from the input stream intermediate <key,value>
pairs. These tuples are automatically grouped and sorted
by their key and forwarded to the reduce phase. There a
worker applies the reduce function on all values associated
with a particular key. As a result, each worker produces
a partial output of the data which is usually stored in an
output file. An optionally specified a merge function can be
applied to join the outputs from two or more reducers.

Note that developers only have to specify the split, map,
reduce and merge functions avoiding them from having
to deal with aspects related to parallel programming. The
framework takes care of scheduling, monitoring and check-
pointing of individual jobs.

The architecture is conceptually a master-slave one, with
many slave nodes processing data (workers) orchestrated by
a master node in charge of assigning, controlling, and syn-
chronizing all of the slave nodes jobs. We refer the reader to
[1] for more information on the MapReduce programming
model.

3 INFRASTRUCTURE AS A SERVICE

An Infrastructure as a Service (IaaS) cloud provider offers
computation and storage resources to third parties. IaaS

provider act as resource brokers, providing access to their
infrastructure and services in a pay-as-you-go model, lever-
aging virtualization to enable secure resource sharing. Fig-
ure 2 shows a conceptual design of an IaaS with a set of
typically offered core services.

External
Network
.]
laaS AP!
Securit Autonomic v image
y Capabilities Management | | Managsment
Accountin Visibility User Smart
g Rules Management Locator
faas Layer Farm Controller
e m e
——= = = =————__
<m0 s < |m|o]:|= «lalo] . |= <|a|o| :|=
===z = NNNgN o Ol o il z|z|z|Z|=
== Z|= HEH == = ==
HEHEHH HEHEBE HEHEEE HEHEHHE
Virtual Layer v T
Laye ; b ! \ ‘
) 7 v 7 \ I \ 7
\ / \ / % / \ /
A ! y ’ \ 1 \ ’
Node 2}/ Node 3 3
Physical Layer
Internal Network

Figure 2. Infrastructure as a Service

The physical layer encompasses all computational re-
sources found in one or more data centres. The virtual-
ization layer enables the secure isolated sharing of these
resources and the IaaS layer is in charge of managing these
virtual resources efficiently. The core services used by an
IaaS are typically: i) user management; ii) controlled access
to the infrastructure resources; iii) accounting for usage of
resources; And, iv) ability to create virtual infrastructures
on-demand;

It is worth noting the IaaS API in Figure 2. This API gives
third parties access to infrastructure services via the Inter-
net, and is used by our cloud service to automatically create
the infrastructure needed for the MapReduce architecture.

4 MANAGE LARGE DATA SETS USING MAPREDUCE
IN THE CLOUD

This section provides a detailed description of our proposed
architecture for carrying out the dynamic deployment of a
MapReduce service in elastic virtual infrastructures. Figure
3 shows the main components: An Elastic MapReduce Service
offering data processing as a service for third party appli-
cations through an API, and, above that, a web-based GUI
providing direct access for users.

The web-based component is a user-friendly front-end
for the services provided by the Elastic MapReduce Service.
The service itself is composed of several layers, each of
them described in the following subsections. The main
components for monitoring and deployment are flexible
enough to be deployed in any type of machine, physical
or virtual, potentially located either at the client side or in
a public cloud. The deployment in a public cloud leads to a
similar offer as provided by Amazon Elastic MapReduce
but using a white-box approach enabling users to know
what is really happening underneath. Hosting it client-side
enables the deployment into multiple private and public
cloud providers. Private and public cloud providers each
have different connectivity requirements, with the public
clouds to be more restrictive due to the low bandwidth,
firewalled communications, data security, etc.

Wab-based GU!

Map-Reduce Job Management Layer ‘

—

A

Monitoring Layer

Automatic Deployment Layer

X-Trace
Connector
7

Hadoopy ‘

SmartFrog

Hadoop
Management

|

-
—d

| Web-based

Gut

Elastic
Map-

Service

»——croaisidelaie

Infrastructure Abstraction Layer
Open Nebufa || Amazon EC2 HP Cells
Connector Connector Connector

i
|
1
|
1
|
1
: Reduce
|
1
|
1
|
1
|

Tmend oy ¥ ¥ ___cotuwg Infrastructure
:—Open Nebula H— Amazon EC2 | \’_ HP Cells “ _: Provider
I
|_ laaSAPI aaS APl _ | laas API__| _a API
-1 Virtual

Machines

Figure 3. Architecture of the Cloud Service for Data Man-
agement using MapReduce

In the following we assume a scenario in which the
framework is deployed at client-side and the intensive data
processing is done in a public cloud. However, note that this
framework enables the exclusive usage of private clouds for
processing sensible information.

41

The MapReduce Job Management Layer, depicted in Figure 3,
exposes the only access point for users to the proposed
Elastic MapReduce service via an HTTP REST interface.
This interface lets users create, configure and execute new
jobs and offers abilities to set parameters related to the
configuration of each job.

Firstly, the virtual infrastructure parameters for the data
processing are captured, i.e. number of master and slave
nodes, the cloud provider to use and boot volume to
utilized. Secondly, input files and output folder locations are
captured. The input files have to be uploaded separately us-
ing the API, if they are not already present in the deployed
infrastructure. Thirdly, the job configuration parameters,
i.e. selected split, map, reduce and merge functions are
captured and finally, the cloud provider credentials, i.e.
user/pass, token, etc. All this user provided configuration
parameters are further referred to as configuration parame-
ters. This is the only user interaction needed, the rest of the
process is done by the proposed framework automatically.

After capturing the input data the job is executed. This
triggers the deployment of the virtual infrastructure using
the Automatic Deployment Layer. To track and monitor run-
ning MapReduce jobs services provided by the Monitoring
Layer can be used.

Finally, this layer also provides the capability to define
complex jobs as dataflows in which several jobs are chained
together to achieve complex data processing flows. Such
workflows can then be submitted to the MapReduce Job
Management Layer for execution.

MapReduce Job Management Layer

4.2 Automatic Deployment Layer

This layer performs the deployment of the virtual infras-
tructure, installation and configuration of the MapReduce
implementation and the execution of MapReduce jobs. The
user triggers this process by starting a new job. It uses
the job configuration parameters captured by the Job Man-
agement Layer. Figure 4 shows an overview of the steps
involved in the automated deployment.

Web Interface

Service
Catalog

Service
Catalog

/]

SF
1|

Architecture Architecture

Proposed Proposed

VM - Virtual Machine
SF - SmartFrog Daemon
1aa$ - Infrastructure-as-a-Service

Figure 4. Overview of the Automatic Deployment Process

Firstly, The required number of VMs (master and slave
nodes) are created and started within the selected cloud
provider. Here the Infrastructure Provider Abstraction Layer
is used to abstract the specifics of individual providers by
presenting a common high level interface. (See #1 in Figure
4)

The VMs are driven by the boot volume attached to
them. The majority of cloud providers use a preloaded boot
volume which may contain a preconfigured MapReduce
implementation for slave and master nodes, ie. a static
provisioning of the MapReduce service. This approach does
not fit very well with public cloud environments due to:
i) It requires manual maintenance, as each image update
requires downloading, mounting, updating and uploading
the image (several GBs) across the Internet. It also hampers
with keeping the MapReduce implementation up-to-date.
ii) All non-default, job specific configuration parameters
have to be manually selected by the user. iii) There is no
automated management of the infrastructure and services.
iv) There exists no run-time model with the current status
of the infrastructure and services.

Our architecture provides a different approach: sharing a
boot volume across all VMs. This boot volume consists of
a clean OS installation with a Configuration Management
Tool (CMT) installed as daemon, which is automatically
launched as part of the OS booting process. (See #2 in Figure
4). This CMT daemon is able to carry out the dynamic
provisioning of services at run-time, receiving software in-
stallation and configuration instructions and performing the
execution on the local OS. This approach is used to dynami-
cally creating the MapReduce architecture, thus overcoming
the aforementioned shortcomings.

Puppet [3], CHEF [4] and CFEngine3 [5] are client-server
CMT solutions originally designed for distributed environ-
ments. Although they do a good job at configuring software
artifacts, they do not cope well with cloud environments in
which virtual infrastructure needs to be created as part of
the provisioning of services. SmartFrog (SF) [2] and SLIM [6]
have been designed for cloud environments, using a peer-
to-peer and a client-server architecture respectively. In our
solution we use SmartFrog for several reasons: i) SF is a pure
peer-to-peer architecture with no central point of failure.

It enables fault tolerance deployment, critical in intensive
data processing in virtual environments, where resources
are out of the control of the user and could spontaneously
disappear. ii) It facilitates different communication protocols
between SF daemons suitable for both private and public
cloud environments. iii) It enables dynamic reconfiguration
capabilities to change infrastructure and services at run-
time stage. iv) It furthermore keeps a model of the current
deployment status which can be used to drive auto-scaling
based on observed metrics. v) It enables to use late binding
configuration information to configure services, information
which only becomes available after a process step has been
reached, especially needed in cloud environments where
users usually do not have control over resource names, e.g.
IP address. Here we use it to inform the slave nodes of the
IP Address of the Master node.

Once all the VMs are booted and the SF daemons are
running, the MapReduce implementation has to be installed
and configured. We have used Hadoop, a well-known
MapReduce Java implementation. Installation is driven by
an configuration file automatically generated, created by the
Automatic Deployment Layer using the configuration param-
eters for the given job. In this scenario one of the VMs is
randomly chosen to be the master and the others become
slaves. The purpose of the master VM is: i) to receive and
process the configuration file (See #3 in Figure 4) and ii) to
act as the master node of the Hadoop architecture.

The configuration file contains all necessary information
to install and configure the whole Hadoop framework and
to execute the MapReduce jobs. Figure 5 depicts a simplified
version of a generated configuration file using the SmartFrog
syntax.

masterNode extends HadoopMasterNode{ // Install "hadoop-master” "hadoop-nodename", "hadoop-dataname” packages
"10.0.0.1"; //VMIP
slaveNodelist LAZY [slaveNodel, slaveNode2]; //Listof slave nodes

sfProcessHost

running true;

}

slaveNodel extends HadoopSlaveMode{ //TInstall "hadoop-slave” package
sfProccesHost "10.0.0.101"; //VMIP
masterNodeList LAZY [masterNode]: //Listof master nodes
running troe:

}

slaveNode2 extends HadoopSlaveNode { //Install “hadoop-slave” package
sfProccesHost "10.0.0.1027; //VMIP
mascerNodeList LAZY [mascerNode]: //Listof master nodes

running trume;

}

job extends MapReduceJob{
masterNode LAZY masterNode;
datalnput
datalOutput

14 Tob specifications

source

MapClass

ReduceClass

SplitterClass ©

}

// beployment dependencies for the Map-Reduce infrastructure

dependsOn (slaveNodel, masterNode::running = true) :

dependsOn (slaveNode2, masterNode::running — true) :

dependsOn (job, masterNode::running — true &&
slaveNodel: :running = true &&
slaveNode2: :running = true) :

sfConfig extends slaveNodel, slaveNode2, masterNode, job; //Configentry point

Figure 5. Simplified examples of SmartFrog configuration file
using Hadoop MapReduce implementation

The example file shown in figure 5 defines a master
node and two slave nodes. It also contains the dependency
information as state dependencies for each component. In
this example, the master node has to be run before the
deployment of the slave nodes starts. Note as well the usage
of late binding variables (using the reserved word LAZY).

The Automated Deployment Layer submits this configura-
tion file to the SF daemon in the master VM, which fragment
this file and propagates these fragments across the other SF
daemons in the peer-to-peer network (See #4 in Figure 4).
For the master node, the associated fragment is processed:
installing and starting the Hadoop master node (Nodename
and JobTraker). All the slave nodes proceed in a similar
manner: upon receiving a file fragment and processing it,
SmartFrog installs the Hadoop slave components (Datanode
and TaskTracker).

SmartFrog uses application repositories (See #4 in Figure
4) for retrieving the necessary application files. These repos-
itories store the Hadoop packages to be copied and executed
in the VMs and the configuration templates filled with the
configuration parameters and copied into the VM. In case
the reader is more interested about how to deal with the
automatically installation and configuration of applications
in the cloud, Kirschnick et al [7] provides a comprehensi-
ble description. Note that these repositories can be hosted
within the cloud provider itself, minimizing the network
delay to further reduce the time required for provisioning
the VMs

Once Hadoop is running, the input data is uploaded to
the internal distributed file system used by Hadoop (HDEFS).
After that, the MapReduce job is submitted to the Hadoop
master node, triggering the execution of the job. Finally,
once the MapReduce job has finished, the output files of
the job are extracted from Hadoop and copied into the file
system used by the service, making them accessible to the
user by means of the REST interface.

4.3 Monitoring Layer

The Monitoring Layer is in charge of tracking the MapReduce
jobs and to present this information to users. It monitors the
VMs and the running MapReduce components. Monitoring
information can either be periodically pulled from the com-
ponents or pushed to it. To do this, the master VM must
run a monitoring software suitable for the specific Hadoop
implementation, which exposes job statistics. Different plug-
ins can be used to provide additional information de-
pending on the used software stack and cloud provider.
For example, the system for monitoring the Infrastructure
provider can yields on OS metrics whereas the X-Trace [8]
monitoring software can provide specific Hadoop metrics.

4.4

The Infrastructure Provider Abstraction Layer, depicted in Fig-
ure 3, is intended for homogenizing the IasS API provided
by the different cloud infrastructure providers, presenting
a high level view across different public and private infras-
tructure provider. Additional providers can be added by
supplying new Infrastructure Provider Connector implemen-
tations. These connectors map the InaS API offered by the
provider with a homogeneous interface used by the upper
layers.

Infrastructure Provider Abstraction Layer

4.5 Security Issues

We use existing encryption, authentication, and access con-
trol mechanisms to enable secure data processing. Although
security in private clouds is less restrictive, the usage of
public cloud providers requires maximizing the security in

the data exchange between our architecture and the hosting
VMs. Then, the Infrastructure Provider Connector has to deal
with this, using secure transport protocols such as SSH,
SFTP and HTTPS when possible. Regarding the boot image,
it might have a firewall and anti-virus software installed and
the OS might be up-to-date.

To securely process data in outsourced data centers is an
open issue nowadays. It is not the intention of this paper
to provide a solution for this issue. However, we try to
minimize the time in which data is stored in the cloud. Thus,
data is never persisted in the boot disk. Input data for the
MapReduce job is copied dynamically to the running VMs
when necessary. Moreover, once the process has finished,
the final results are copied to the local storage (assumed
at the client-side) and the VM is cleaned (including MapRe-
duce cache). We take this approach to maximize the privacy
of the data against unauthorized accesses (by both external
users and the infrastructure provider).

Moreover, we do not share the local file system used in
our Elastic MapReduce service between different tenants.
The file system is isolated by physically separating it per
each tenant or providing an authorization system for con-
trolling the access to the files stored in the local file system,
depending on the scenario.

5 IMPLEMENTATION

The proposed architecture has been implemented as a
proof of concept and released publicly under LGPL'. 1t is
composed of two different components: A RESTful web
service offering the functionalities of the MapReduce Job
Management layer and a front-end web-based application.
The web application can be be installed in both Servlet and
Portlet containers.

The elastic MapReduce service itself has been imple-
mented as a war artifact which may be deployed into
an existing web application server. The boot volume are
composed of a clean installation of Ubuntu 9.04 and Smart-
Frog v3.17. Additional components that SmartFrog relies
on have been added to the image. For example, apt-get
to install necessary Linux packages required by Hadoop.
Furthermore the SmartFrog Hadoop component has been
pre-installed, which provides the necessary classes used to
map configuration parameters to the configuration file for-
mat expected by Hadoop and to control individual services
(e.g. start, stop. etc.). To test our architecture, we developed
a number of different cloud connectors: HP private cloud
HP Cells, VMWare, Mock and Open Nebula and Amazon EC2
for public clouds.

6 STATISTICS

This section provides some performance statistics about
executing Hadoop in the Cloud. The jobs consists of sorting
4 GB of randomly generated records. This 4GB is spread
across 10 files of 400 MB, each generated using the Hadoop
randomWriter sample application. Both applications are
available in the latest Hadoop release. For comparison, the
MapReduce job and its data is fixed while only the number
of workers is varied. Different virtual infrastructures have

1. The Elastic Hadoop Service is available at http:
/ /smartfrog.svn.sourceforge.net/viewvc/smartfrog/trunk/core/
extras/hadoop-cluster/

been created ranging from 1 to 50 workers. For statistical
relevance, each individual experiment has been repeated
50 times and the values presented are averages over all
test runs. This experiment uses HP Cells as cloud provider,
our internal infrastructure provider, i.e. a exclusive private
cloud used only for this experiment (no extra workload).
This small cloud is composed of 6 physical blades with an
Intel Core 2 Quad and 6GB RAM, 500GB HDD, connected
via gigabit lan. Each blade is configure to manage up to 8
VMs.

The intention of this experiment is: i) to measure the rela-
tionship between the time for creating the virtual infrastruc-
ture and for booting the OS (infrastructure creation time),
the time for provisioning and starting the infrastructure
with the MapReduce implementations (provisioning time)
and the time for executing the MapReduce job, including
data uploading and downloading (MapReduce execution
time). ii) to validate the architecture for the automatic de-
ployment of Hadoop in the Cloud, since all these tests have
been executed using a mere batch script which interacts
with the REST interface, configures the jobs, submits them
into the framework and finally gathers the time information
from the monitoring layer.

Although, this sequence of batch jobs can be executed
using the workflow capabilities, we have decided to execute
each job in isolation, forcing a re-deploy of the whole
infrastructure every time; however, this could be optimized
in production by exposing an do-not-undeploy parameter to
the user which if enabled retains the deployed resources so
that they can be reused by the same user for additional jobs,
avoiding or minimizing the creation and provision times on
the next executions.

Scalability Results

Execution Time (sec)

12 3 4 5 6 7 8

9 10 11 12 13 14 15 20 30 40 50

#Workers

Figure 6. Scalability Results

Figure 6 shows a clear decrease in the time spent exe-
cuting the MapReduce job whilst increasing the number of
available workers. This is an excepted result because the
MapReduce framework is built to scale with the available
resources. The minimal fluctuation in the linear trend may
be due to different placement of the vms in the physical
infrastructure creating the needs for additional network
hops or not if vms where deployed on the same machine
and the sometimes unpredictable behavior of virtualization
technologies in shared environments. The provisioning time
is also constants and sometime even achieves super linearity
due to the SmartFrog capability for doing parallel installa-
tion and configuration of applications. Note that on average
the overhead time with respect to the infrastructure creation
time is around 10% for carrying out the provisiong of
services, which keeps it in the boundary of acceptable times.

Both Hadoop execution and provisioning times validates
the scalability of the proposed architecture since they are
the times directly related to the architecture proposed.

Regarding the infrastructure creation time it is almost con-
stant up to 10 workers. After that, the time grows linearly
(note that the X scale steps are not constant) when bigger
virtual infrastructures are created. This can be attributed to
the small size of our underlying cluster and therefore to
the limited number of resources available for the workers.
Note that 30 workers means that each physical machine has
to support 5 VMs at same time with the associated compu-
tational, access disk and memory consumption overhead.

These results show that the virtual infrastructure creation
time is very significant with respect to the Hadoop exe-
cution time even in a private cloud. This fact emphasizes
the importance of giving the final user the ability to decide
what cloud provider or private cloud to use if performance
is a concern. Finally, note that real workloads will not
necessarily work with randomly generated data and may
use sensitive data, in these cases the proposed architecture
has successfully demonstrated the usage of a private cloud
for processing such data, as data it will not cross the security
boundaries. The reason for which we have not used a public
cloud for this experiment is because we wanted to control
that no external data fluctuations due to unpredictable
overheads related to the physical machines would yield
different deployment times.

7 RELATED WORKS

Recently, Grossman and Gu [9] explained the design and
implementation of a high performance cloud specifically
designed to archive, analyze and mine large distributed data
sets. In this paper, the authors remark on the advantages of
using cloud infrastructure for processing large data sets.

Keahey et Al [10] describe a cloud platform offering
targeted at scientific and educational projects intended for
making easy experiments on EC2-style cloud providers.
The authors remark that the use of Hadoop on their plat-
form dominated during the whole projects life time and
authors associate this fact to the growing interest of the
science community and the advantages achieved by com-
bining MapReduce with on-demand cloud infrastructure
providers. In fact, Amazon Elastic MapReduce ? is a well-
known service already offering this service. However, this
is a black box ready-to-use service which uses Amazon EC2
as cloud provider and does not provide any description
about its architecture or enables users to customize the
Hadoop software stack. Moreover, they do not provide tools
for enabling users to become their own Elastic MapReduce
providers, especially for processing sensitive data.

An interesting research very related to our proposal is
provided by Liu and Orban [11]. They describe an imple-
mentation of the MapReduce programming model on top
of the Amazon EC2. This contribution is focused on some
specific aspects: how to handle failure detection/recovery
and conflict resolution of the MapReduce nodes, controlling
latency, tracking jobs, statistics, etcetern. However, it does
not explain in detail how the MapReduce architecture is
deployed, configured and executed. This fact hampers the

2. Amazon Elastic MapReduce is available at http://aws.
amazon.com/es/elasticmapreduce/

reproduction and validation of this proposal by other re-
searchers.

Mesos [12] is a platform for sharing commodity clusters
between multiple diverse cluster computing frameworks,
such as Hadoop and MPI. Sharing improves cluster uti-
lization and avoids per-framework data replication. This
is a complementary approach to our architecture presented
here and could be deployed together with Hadoop enabling
data locality by reading and computing data stored on
the machine which holds the data and other advantages
provided by the framework.

Moreover, other proposals such as Hadoop on Demand
(HOD) ® and the Cloudera Hadoop distribution 4 offer
client-side alternatives for devploying Hadoop on Demand.
However, none of these solutions cover the on-demand
infrastructure creation where Hadoop will be installed as
part of the deployment process of the service.

8 CONCLUSIONS

The MapReduce programming model has shown immense
interest for processing large and unstructured data sets.
This proposal explains an architecture for automatically
deploying Hadoop systems on-demand in the Cloud. This
architecture has been validated by means of a prototype
implementation. It enables users to interact with the MapRe-
duce programming model while hiding the complexity of
deploying, configuring and running the MapReduce soft-
ware components in the public or private cloud provider
involved. This architecture enables users to become their
own MapReduce cloud providers since it has been designed
as an independent platform-as-a-service layer suitable for
different cloud providers. It also enables users to get the full
control over the complete data processing since it exposes
the SmartFrog configuration system to the final users by
means of graphical interfaces to provide a total control, and
also enables users to process confidential data safely since
allows for the usage of your own cloud infrastructrue.

Regarding future work, it is expected to improve the
cloud service with algorithms to automatically schedule
tasks using the most suitable cloud provider to maximize
the performance while minimizing the price. Moreover,
another expected step is to provide auto-scaling capabilities
to the architecture according to some business policies as
well as dealing with fault tolerance capabilities. We except
to adapt the current architecture to the Hadoop NextGen
architecture recently announced 5, Finally, we would also
like to explore workflow languages for expressing advanced
complex data processing jobs and how these languages can
be adapted into the Cloud environment.

ACKNOWLEDGEMENT

Thanks the Funcion Seneca for sponsoring Jose M. Alcaraz
Calero under the post-doctoral grant 15714/PD/10.

3. Hadoop on Demand is available at http:/ /hadoop.apache.org/
common/docs/r0.17.2 /hod.html

4. Claudera Hadoop is available at http://www.cloudera.com/
hadoop/

5. The Next Generation of Apache Hadoop MapReduce.

http://developer.yahoo.com/blogs/hadoop/posts/2011/02/mapreduce-

nextgen

REFERENCES

(1]

(2]

(3]
(4]

(5]
(6]

(71

(8]

(9]

[10

—

[11]

[12]

J. Dean and S. Ghemawat, “Mapreduce: Simplified data pro-
cessing on large clusters,” in Proceedings at 6th Symposium on
Operating System Design and Implementation, 2004.

P. Goldsack, J. Guijarro, S. Loughran, A. Coles, A. Farrell,
A. Lain, P. Murray, and P. Toft, “The smartfrog configuration
management framework,” ACM SIGOPS Operating Systems
Review, vol. 43, no. 1, pp. 16-25, 2009.

J. Turnbull, Pulling Strings with Puppet. FristPress, 2007.

A. Jacob, “Infrastructure in the cloud era,” in Proceedings at
International O'Reilly Conference Velocity, 2009.

M. Burgess, “Knowledge management and promises,” LNCS
Scalability of Networks and Services, vol. 5637, pp. 95-107, 2009.
J. Kirschnick, J. M. Alcaraz-Calero, L. Wilcock, and N. Ed-
wards, “Johannes kirschnick and jose m. alcaraz calero and
lawrence wilcock and nigel edwards,” IEEE Communication
Magazine, vol. 48, p. 12, 2010.

J. Kirschnick, J. M. Alcaraz-Calero, P. Goldsack, A. Farrell,
J. Guijarro, S. Loughrana, N. Edwards, and L. Wilcock, “To-
wards a p2p framework for deploying services in the cloud,”
Software: Practice and Experience, vol. (early access on-line),
2011.

R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica, “X-
trace: A pervasive network tracing framework,” in Proceeding
at 4th USENIX Symposium on Networked Systems Design &
Implementation, 2007.

R. Grossman and Y. Gu, “Data mining using high performance
data clouds: experimental studies using sector and sphere,” in
Proceeding of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2008, pp. 920-927.

K. Keahey, R. Figueiredo,]J. Fortes, T. Freeman, and M. Tsug-
awa, “Science clouds: Early experiences in cloud computing
for scientific applications,” in International Conference on Claoud
Computing and Its Applications, 2008.

H. Liu and D. Orban, “Cloud mapreduce: a mapreduce im-
plementation on top of a cloud operating system,” Accenture
Technology Labs, Tech. Rep., 2009.

B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, R. Katz, S. Shenker, and I. Stoica, “Mesos: A platform
for fine-grained resource sharing in the data center,” in 8th
USENIX Symposium on Networked Systems Design and Imple-
mentations, 2011.

