
Journal of Web Engineering, Vol. 0, No. 0 (2010) 000–000
c© Rinton Press

A Non-monotonic Expressiveness Extension on the Semantic Web Rule Language

Jose M. Alcaraz Calero ∗+, Andres Muñoz Ortega +, Gregorio Martinez Perez +, Juan A. Botia Blaya +, Antonio F. Gomez Skarmeta +

+ Department of Information and Communication Engineering , University of Murcia, Campus de Espinardo s/n

Murcia, 30100, Spain

jmalcaraz, amunoz, gregorio, juanbot, skarmeta@um.es

∗ Cloud and Security Lab, Hewlett-Packard Laboratories, Stroke Gifford, Filton
Bristol, BS34 8QZ, United Kingdom

jose.maria-alcaraz.calero@hp.com

SWRL (Semantic Web Rule Language) extends OWL syntax and semantics by enabling

the description of Horn-like rules. However, the current SWRL specification lacks sup-
port for, among others, negative expressions, missing values and priority relationships

between rules, which are frequently needed when modeling realistic scenarios. This paper

motivates the necessity of surpassing some of these problems and provides an extension
over the original SWRL aimed to define more expressive rules. Hence, the following

four operators have been added to SWRL: Not operator (i.e., classical negation) to ex-

press negative facts; NotExists quantifier to ask for missing facts in the knowledge base
(when used in the antecedent of the rule) and remove facts (when used in the conse-

quent); Dominance operator to establish priorities among rules; and Mutex operator

to establish exclusions during rule executions. The syntax and semantics of these four
operators are described in this proposal. Moreover, the non-monotonicity added to the

rule-based inference process by means of such elements is also explained. An implemen-

tation of the four operators has been developed as a plug-in for the Jena generic rule
engine, which enables the execution of Horn-like rules, together with a parser to translate

SWRL rules to the Jena specific rule language. Finally, the proposed SWRL extension
and its implementation have been validated in a real scenario centered on call forwarding

management in an intelligent building.

Keywords: Semantic Web Rule Language (SWRL), Ontology Web Language (OWL),

Non-Monotonicity, Rule-based Inference Process

Communicated by: to be filled by the Editorial

1 Introduction

Semantic Web [4] languages such as OWL [3] and SWRL [11] have shown to be useful in man-

aging knowledge and providing the semantics for reasoning about it. Such semantics enable

computers to automatically obtain new knowledge over an application domain by means of

powerful inference processes. To this end, OWL describes any application domain by means

of ontologies. An ontology is the description of a given application domain by means of state-

ments. The ontology is usually divided in two different set of statements called boxes. The

terminological box (TBox) is the set of statement within the ontology used for describing the

concepts, datatypes, relationship between concepts and semantics over the domain described.

1

2 A Non-monotonic Expressiveness Extension on the Semantic Web Rule Language

The relationship between concepts can be a simple description of a feature using strings, in-

tegers or any other simple type, referred as ”‘literal”’, or can be a complex desription using

relationships between two concepts available in the domain. The assertional box (ABox) is the

set of statement within the ontology used for describing particular scenarios of the domain,

generally by means of instances (individuals in OWL jargon). Formally, an OWL ontology

[25] is defined as the tuple O =< R,LV,EC,ER,L, I > where R is the set of statements

related to the application domain, LV ∈ R is a set of literal values, EC is a mapping from

classes and datatypes to subsets of R and LV respectively, ER is a mapping from properties

to binary relations on R, L is a mapping from typed literals to elements of LV , and I is a

mapping from individual names to elements of EC.

OWL-Lite, OWL-DL, OWL-Full, and late OWL 2 [20] (previously called OWL 1.1) are

the main family of OWL languages. They provide different expressiveness and computational

complexities. More specifically, OWL-Lite is a subset of OWL-DL, and in turn, the latter

is a subset of OWL 2, which eventually is a subset of OWL-Full. From the point of view

of the trade-off between expressiveness and computational complexity, OWL 2 presents more

compelling characteristics than the other OWL languages. The main reason is that OWL-

Full is not decidable whereas the remainder OWL languages are based on different decidable

fragments of Description Logic (DL) [1]. Besides, OWL 2 is more expressive than OWL-Lite

and OWL-DL. In this context, decidability is referred as the capability to perform inference

processes in a finite time. OWL 2 offers a wide range of constructors such as inheritance among

concepts and properties, transitive and inverse properties, cardinality restrictions, etc., while

keeping within the decidability bounds.

On the other hand, SWRL has been designed as a syntactic and semantic extension of OWL

languages in order to enable the definition of Horn-like rules. SWRL rules are in the form of

an implication between a conjunction of antecedents (body) and consequents (head), meaning

that whenever the conditions specified in the antecedents hold, the conditions specified in the

consequent must also hold, i.e. the logical implication. Both conjunctions consist of atoms of

the form C(x), P (x, y), sameAs(x, y), differentFrom(x, y) and builtIn(r, x, ...), where C is

an OWL class, P is an OWL property, r is a built-in function, and x, y are either variables,

OWL individuals or OWL data values. Unfortunately, the combination of OWL and SWRL

is undecidable, even when the OWL language adopted is decidable. However, it is possible

to restore the decidability of this combination by restricting the variables in SWRL rules to

only take values in named individuals of the component I of an OWL ontology (in OWL it

is possible to define anonymous individuals). These restricted rules are known as DL-safe.

To apply this restriction, it has to be ensured that only the variables previously declared in

the antecedent part of the SWRL rule can be used lately in the consequent part. A complete

explanation about this problem and its solution can be found elsewhere [21].

Despite of the high expressiveness provided by the combination OWL+SWRL, there are

several constructors for describing knowledge and enabling a particular type of inference

processes out of this combination. The main reason is the computational complexity and the

undecidability associated to these constructors. Nonetheless, this lack results in an inaccurate

knowledge management in many application domains. Let us see three informal examples of

this handicap. Firstly, neither OWL nor SWRL allow for a deductive processes where a fact

Jose M. Alcaraz Calero, Andres Muñoz, Gregorio Martinez, Juan A. Botia, Antonio F. Gomez Skarmeta 3

is inferred from the absence of some other facts in a knowledge base. For example, the rule

“if there is no sign of Bob being localized in his office, then a call forward to his mobile phone

must be done” cannot be expressed in any of the studied languages. Secondly, the removal

of knowledge is not considered in OWL or SWRL. For instance, the rule “if Bob is localized

in his office then remove all his call forwards” cannot be expressed following this restriction.

Finally, SWRL does not permit to define a priority order or an exclusion relationship among

rules. The possibility of stating an order is useful when two or more rules can be fired at

the same time and it is desired to establish a total (o partial) execution order, whereas the

exclusion relationships prevent a rule from being executed if the rule excluding it has been

previously fired.

All the examples given in the paragraph above are oriented to stress the necessity to obtain

a more expressive rule language for the Semantic Web. Thus, the main goal of this paper is

to provide SWRL with an expressive extension by means of new operators. These operators

allows for capturing a broader range of knowledge and applying more types of inference

processes in the application domain. As a result, the following four operators have been

added to SWRL: Not operator (i.e., classical negation) to express negative facts; NotExists

quantifier to ask for missing facts in the knowledge base (when used in the antecedent of

the rule) and remove facts (when used in the consequent); Dominance operator to establish

priorities among rules; and Mutex operator to establish exclusions during rule executions.

These operators have been implemented taking into account their semantics and they are

ready to be used in rule-based engines which are able to evaluate SWRL-like format rules.

The rest of the paper is structured as follows: Section 2 describes some concepts on which

this proposal is based. Section 3 provides a related work in expressive extensions for SWRL

with special emphasis on non-monotonic extensions. A running example is given in Section

4 to facilitate the understanding of the extensions proposed. The syntax and semantics of

the new operators are fully explained in Section 5. Section 6 provides a justification of the

expressiveness proposed and its practical usage. The inference process to apply the semantics

provided by the new operators is covered in Section 7. A complete scenario is depicted in

Section 8 where all the new operators and their associated inference processes are applied with

the aim of showing their added-value. Next, technical implementation aspects are explained

in Section 9. Finally, Section 10 summarizes the contribution of this paper and outlines the

future work.

2 Non-monotonicity and OWA

This section presents some concepts that will help to better understand the proposal given

in the paper. The first one is non-monotonicity. In order to explain this concept, let us

introduce some notation first. Let L be a logic language and let KB be a set of well-formed

formulas in L (also referred as facts or statements) which represent the knowledge base of

certain application domain. Let S be a function for evaluating the truth value of all the

formulas contained in KB at time t. This function returns True (T) or False (F) according

to the truth value of a formula x in KB. Let define Vt as the truth value at time t, and let

define St as the formula S applied in the time t. Formally,

(S : St(x) = Vt /∀x ∈ KBt , Vt ∈ {T |F}) (1)

4 A Non-monotonic Expressiveness Extension on the Semantic Web Rule Language

A logic L is monotonic if and only if the addition of a set of formulas in KB does not
entail any change on the truth value of its previous existing formulas. Let us represent the
addition of a set of formulas Φ in KB at time t as KBt+1 = KBt ∪ Φ. Then, monotonicity
implies that all the formulas in KBt maintain their truth value in KBt+1. Formally,

∀x ∈ KBt,∀y ∈ KBt+1, if x = y then St(x) = St+1(y) (2)

When a logic language does not fulfill the condition given in (2), it is considered as non-
monotonic. Formally, L is a non-monotonic logic if the following condition can be applied in
any case:

∃x ∈ KBt, ∃y ∈ KBt+1, such as x = y /→ St(x) = St+1(y) (3)

The second concept presented in this section is the Open World Assumption (OWA). OWA
assumes that the knowledge contained in a KB is not necessarily complete. The contrary ap-
proach is the Closed World Assumption (CWA), which assumes that a KB contains a complete
knowledge about a domain. The OWA approach is normally adopted in open environments
such as the Semantic Web, where new knowledge is constantly being discovered, reused and
exchanged, and the knowledge already stated in a KB is considered as a partial vision of
the application domain. As a matter of example to emphasize the differences between both
approaches, suppose a KB which does not contain a formulas f . By using function S in (1),
let S(f) = k be the truth value of f . Then, the value of k is neither True nor False in OWA
because the formulas {f} or {¬f} could be later added to the KB. Contrarily, k = False
in CWA because it is not expected further additions to the KB and the default convention
Negation-as-Failure (NaF) is assumed here. This convention assigns the False truth value
to those formulas that are not explicitly stated in the KB.

Note that the adoption of OWA implies the definition of a third truth value in the range
associated to the function S given in (1). This value is labeled as Undefined (U). As a result,
the function S could be redefined when adopting the OWA approach as described next:

S : St(x) = Vt /x ∈ {KB} , Vt ∈ {T |F |U}

V = T, if x ∈ KB

V = F, if ¬x ∈ KB

V = U, if x /∈ KB

(4)

The definition of the function S in (4) assigns the truth value T (true) to positive facts
stated in the KB, F (false) to negated facts stated in the KB, and U (undefined) to facts which
are not stated in the KB. To conclude this section, let us now see the relationships among
monotonicity and OWA/CWA. Normally, non-monotonic logics adopt the CWA approach.
Nevertheless, there exist some works that combine this kind of logics with OWA [14, 5, 9].
On the other hand, monotonic logics usually adopt OWA. This is the case of the family of
Description Logics. Since OWL is based on Description Logics, this language is also monotonic
and adopts the OWA approach. Likewise, SWRL follows monotonicity and OWA as it is based
on an extension of OWL.

Our intention is to relax the inherited monotonicity of SWRL in order to include some
non-monotonic operators, thus incorporating new expressiveness in the rule language. These

Jose M. Alcaraz Calero, Andres Muñoz, Gregorio Martinez, Juan A. Botia, Antonio F. Gomez Skarmeta 5

operators are able to produce consequences in the knowledge base which imply a revision
of the truth value of the facts contained therein, e.g. removal of facts. While operators of
non-monotonic nature are well-known in CWA-based logics, their inclusion on OWA-based
logics as DL remains an open issue. At the same time, there are many scenarios where these
kinds of operators are needed in order to capture the knowledge of their application domain.
For example, the scenario exposed in Section 4 is a clear example in which these operators
are essential in the modeling of the application domain.

3 Related Work

There exist some theoretical researches related to the inclusion of non-monotonic reasoning in
OWL such as the extensions of OWL expressiveness with abductive reasoning [5], reasoning
by default [16], circumscription [29] and autoepistemic reasoning [9], [14]. All of them try
to incorporate new expressiveness in OWL in order to enable additional reasoning processes
which are not covered in the original OWL proposal. Thus, [5] provides a detailed description
of the inclusion of abductive reasoning in OWL, but the authors do not offer the algorithm
of the inference process which performs this reasoning in DL due to its complexity. On the
other hand, the reasoning by default extension [16] provides a theoretical study and practical
implementation to achieve this kind of reasoning in OWL DL. Moreover, autoepistemic rea-
soning extensions [9, 14] promote the inclusion of the k epistemic operator used to explicitly
ensure the existence of facts and to deal with assumptions in the knowledge base. Finally,
another extension to OWL [17] offers a conflict management for inconsistent knowledge based
on a 4-valued logic.

It is worth mentioning the substantial gap between the practical and theoretical ap-
proaches, where the practical perspective presents a reduced group of implementations to
demonstrate some of the previous works. There are some implementations of OWL reasoners
such as Jena [18] or Hoolet [2] working on OWL-Lite expressiveness. The number of imple-
mentations is reduced for OWL reasoners working on OWL-DL expressiveness, being Bossam
[13] or KAON2 [12] some examples. The incorporation of some of the theoretic features such
as OWL 2 leads to a drastic reduction of the number of available reasoners, being Pellet [30]
and FaCT++ [32] the only ones with a fully coverage for these features. Pronto [15] is an ex-
tension built on top of Pellet to support uncertainty and probabilistic capabilities. Regarding
non-monotonic extensions, only Pellet in a commercial version provides a certain treatment
of k operator as stated in [14] and certain treatment of reasoning by default as stated in [16].

On the other hand, there are some research works pointing to the addition of new expres-
siveness to SWRL. The most relevant proposals are fuzzy extensions [23], [31], mathematical
extensions [26], constraint extensions [19], temporal extensions [27] and first-order logic ex-
tensions [24]. However, to the best of our knowledge, there are not efforts to provide SWRL
with non-monotonic extensions. Thus, the main contribution of this proposal is to relaxing
monotonicity in SWRL in order to enable the description of new operators of non-monotonic
nature which augment the expressiveness of this language.

4 Running Example

The aim of this section is to provide a running example used in the rest of this paper. The
scenario stresses the necessity of certain type of expressiveness in SWRL. It depicts the call
forwards management in an intelligent building modeled by means of an OWL-DL ontology-
based representation of the DMTF-CIM management standard [8]. The CIM standard is
widely adopted in the industry for representing information systems. It is composed of some
thousands of concepts and several thousands of properties related to information system

6 A Non-monotonic Expressiveness Extension on the Semantic Web Rule Language

models. Some of the CIM properties are modelled as OWL classes rather than OWL properties
into the ontology. The reason of this modellation is due to the simple fact that there are
different kinds of properties in CIM and this differentiation cannot be modelled using regular
properties in OWL language, thus the mapping to OWL classes is preferred by some authors.

The intelligent building is composed of floors which contain rooms. All the employees in
the building have assigned a room and they may have a mobile phone. A landline telephone
could also be available inside of each room. Moreover, in the building there are some software
agents deployed to control different activities. Hence, there is a floor controller agent that
monitors all the floor services. In addition, a user agent is also present in each room in
order to manage the user’s preferences in the building. The aim of this scenario is to provide
an intelligent pervasive service for call forwarding. This service will be available for all the
employees working in the building. The simplified version of the OWL definition of this
domain is expressed using an abstract syntax in Table 1.

OWL Definition Description
Class(Room), Class(Floor), Class(Building), Class(FloorController),
Class(CallService), Class(CallDevice), Class(Identity),
Class(Location)

All the resources available on the application
domain. All these resources inherit from
Class(ManagedElement).
SubClassOf(Room, ManagementElement),
SubClassOf(Floor, ManagementElement),
SubClassOf(Building, ManagementElement),
SubClassOf(FloorController, Manage-
mentElement),
SubClassOf(CallService, ManagementEle-
ment),
SubClassOf(CallDevice, ManagementEle-
ment),
SubClassOf(Identity, ManagementElement),
SubClassOf(Location, ManagementElement)

Class(AssociatedLocation), Class(AllocatedResource),
Class(ServiceAvailableToElement), Class(AssignedOffice),
Class(Subsumption), Class(CallForward)

All the relationships among resources
(modelled as classes). All these resources
inherit from Class(Association) in order to
represent a relationship on CIM.
SubClassOf(AssociatedLocation, Associa-
tion),
SubClassOf(AllocatedResource, Associa-
tion),
SubClassOf(ServiceAvailableToElement,
Association),
SubClassOf(AssignedOffice, Association),
SubClassOf(Subsumption, Association),
SubClassOf(CallForward, Association)

ObjectProperty(elementLocated { domain(AssociatedLocation)})
ObjectProperty(location { domain(AssociatedLocation)})
ObjectProperty(resource { domain(AllocatedResource)})
ObjectProperty(allocatedIn { domain(AllocatedResource)})
ObjectProperty(serviceProvided { do-
main(ServiceAvailableToElement)})
ObjectProperty(userOfService { do-
main(ServiceAvailableToElement)})
ObjectProperty(assignedTo { domain(AssignedOffice)})
ObjectProperty(elementAssigned { domain(AssignedOffice)})
ObjectProperty(from { domain(CallForward)})
ObjectProperty(to { domain(CallForward)})
ObjectProperty(member { domain(Subsumption)})
ObjectProperty(collection { domain(Subsumption)})

These are all the properties associated to
CIM associations used to establish relation-
ship among resources. For simplicity, the
range of all of them has been assumed as
ManagedElement.

SubClassOf(Room,Location), SubClassOf(Floor,Location), SubClas-
sOf(Building,Location)

These are the inherit relationships related to
the localization

Table 1. OWL abstract syntax of the application domain used as running example

Jose M. Alcaraz Calero, Andres Muñoz, Gregorio Martinez, Juan A. Botia, Antonio F. Gomez Skarmeta 7

Figure 1 shows the scenario used as running example from the instantiation of the appli-
cation domain described in Table 1. This scenario describes an ACME Tower building which
is composed by twenty floors. (Floor4 and Floor16 are shown in the figure and the rest are
omitted for simplicity). The composition relationship among ACME Tower and its floors has
been modeled using the Subsumption association. Bob is an employee of this building, who
has his own room (BobRoom) and his own mobile phone assigned. This room is located in
Floor4. Each floor has a floor controller agent which manages the devices allocated therein.
On the other hand, Bob’s room has associated a personal agent (BobAgent) responsible for
configuring the behavior desired by Bob over his available services. In this scenario, the
available service in Bob’s room is the call service for Bob’s telephone. Analogously, Alice is
another employee in the system, and she has her own room in Floor16. Her room has the
same features as Bob’s room, such as a landline telephone, the call service and a personal
agent (AliceAgent). The elements related to Alice are not showed in Figure 1 for simplicity.

There are some RFID sensors spread throughout the building so as to detect the presence
of users in a specific area. Building sensors are located in the external doors of the building
and they detect users which are entering/leaving the building. Floor sensors are located near
to the lifts and ladders detecting the presence of users in a specific floor. Eventually, room
sensors are located near room doors and they provide the presence of users in such rooms. All
these sensors have a controller that is in charge of updating the location of the user into the
knowledge base. Actually, the pervasive system uses a system such as OCP (Open Context
Platform) [22] for updating the knowledge base with the location information. OCP is a mid-
dleware system whose main goal is to manage the context information of the whole system.
However, the disscusion of this issue is beyond the scope of this paper. For the purposes of
this scenario, the sensor information is simulated by means of the following SWRL rules ex-
pressed in human readable syntax. We use these rules just for simplication enabling us to get
an artifact to fire such events in the system when we want to fire them creating a controlled

Fig. 1. The running scenario of an intelligent building

8 A Non-monotonic Expressiveness Extension on the Semantic Web Rule Language

environment for testing. :

B1 :→ AssociatedLocation(?al) ∧ elementLocated(?al, Bob) ∧ location(?al, BuildTower)

F4 :→ AssociatedLocation(?al) ∧ elementLocated(?al, Bob) ∧ location(?al, F loor4)

F16 :→ AssociatedLocation(?al) ∧ elementLocated(?al, Bob) ∧ location(?al, F loor16)

RA :→ AssociatedLocation(?al) ∧ elementLocated(?al, Bob) ∧ location(?al, AliceRoom)

RB :→ AssociatedLocation(?al) ∧ elementLocated(?al, Bob) ∧ location(?al, BobRoom)

These rules will be used to activate the Bob’s location according to our interest on dif-
ferent building sites. Observe that these rules have no antecedent. As a result, when the
activation of one of these rules is decided, it will be automatically fired since the antecedent
is trivially satisfied. The consequents of the rules create an AssociatedLocation association
among Bob (referenced by the elementLocated property) and the place where he has been
located (referenced by the location property). Thus, rule B1 simulates that the building
sensor has detected Bob entering the building. Analogously, the rules F4, F16, RA and RB
simulate that Bob has been detected in Floor4, Floor16, AliceRoom and BobRoom, respec-
tively. Additionally, a BreakService rule is used to simulate that the call service of Bob’s
telephone is out of order, this rule will be described in Section 8.

Using this scenario, Bob could insert his preferences about call forwarding using his agent,
and analogously, the system administrator could insert the preferences provided by the build-
ing service manager into the floor controllers. To this end, there are some rules that cannot
be represented on the SWRL standard. In fact, in the following sections, some lacks about
the expressiveness in SWRL language will be identified as necessary for enabling realistic
scenarios such as the intelligent building one.

5 SWRL Expressiveness Extension

The current SWRL specification only allows the definition of rules whose atoms represent
positive facts. By analogy with the function S given in (4), these facts are equivalent to those
whose truth value is True in such a function (i.e., positive facts stated in the KB). This section
describes the non-monotonic expressiveness extension for SWRL proposed in this paper, with
the aim of defining the operators that will enable the use of negative and missing facts in
SWRL rule atoms (i.e., facts whose truth value is False and Undefined according to the
aforementioned function S.) The explanation of this proposal has been divided into two
subsections. The first one describes the extension developed over the syntax of the SWRL
language. The second one describes the new semantics adopted on the new operators defined.

5.1 Syntax Extension

The abstract syntax is specified here by means of Extended BNF. Terminals are quoted; non-
terminals are bold and not quoted. Alternatives are either separated by vertical bars (|) or
are given in different productions. Components that can occur at most once are enclosed
in square brackets ([. . .]); components that can occur any number of times (including zero)
are enclosed in braces ({. . . }). Following the original SWRL specificationa, a rule term con-
sists of an antecedent and a consequent, each of which consists of a (possibly empty) set of
atoms. A rule can also be assigned to a URI reference, which could serve to identify such rule.
Our syntax extends the antecedent and consequent definitions in order to enable the use of

asee http://www.w3.org/Submission/SWRL/ for details about the original SWRL abstract syntax

Jose M. Alcaraz Calero, Andres Muñoz, Gregorio Martinez, Juan A. Botia, Antonio F. Gomez Skarmeta 9

quantifiers. A quantifier is applied over one or more atoms in order to provide them with a
particular semantic. In this proposal the quantifiers Exists and notExists are allowed:

constructor ::= rule | dominance | mutex

rule::= ’Implies(’ [URIreference] { annotation } antecedent consequent ’)’

antecedent ::= ’Antecedent(’ { quantifier } ’)’

consequent ::= ’Consequent(’ { quantifier } ’)’

quantifier ::= atom | ’Exist(’ { atom } ’)’ | ’NotExist (’ { atom } ’)’

Regarding atom definition, it has been also extended from the original SWRL proposal,
which enables the description of dataRange, individualvaluedPropertyID, datavaluedPropertyID,
sameAs, differentFrom and builtin atoms types. In our proposal two new kind of atoms
have been added in order to allow for the definition of both negative object properties and
negative data properties (see not atoms). Note that atoms may refer to individuals, data
literals, individual variables or data variables. In the context, a d-object is referred to either a
data literals or data variable and a i-object is referred to either an individual or a individual
variable.

atom ::= description ’(’ i-object ’)’

| ’dataRange (’ d-object ’)’

| ’individualvaluedPropertyID (’ i-object i-object ’)’

| ’datavaluedPropertyID (’ i-object d-object ’)’

| ’sameAs(’ i-object i-object ’)’

| ’differentFrom(’ i-object i-object ’)’

| ’builtIn(’ builtinID { d-object } ’)’

| ’not(’ individualvaluedPropertyID ’(’ i-object i-object ’)’ ’)’

| ’not(’ datavaluedPropertyID ’(’ i-object d-object ’)’ ’)’

i-object ::= i-variable | individualID

d-object ::= d-variable | dataLiteral

i-variable ::= ’I-variable(’ URIreference ’)’

d-variable ::= ’D-variable(’ URIreference ’)’

On the other hand, two new types of constructors has been provided as extensions of
the SWRL syntax: dominance and mutex. These constructors are proposed to achieve the
definition of relationships between rules and their semantics will be later explained. The URI
reference terminals serve to identify the rules of these relationships.

dominance ::= ’dominance(’ URIreference , URIreference ’)’

mutex ::= ’mutex (’ URIreference , URIreference ’)’

5.2 Semantics

The semantics provided in SWRL are a straightforward extension of the semantics for OWL
given in the OWL Semantics [25]. The main extension of SWRL is the definition of bindings,
which are extensions of OWL interpretations that also map variables to elements of the
domain. Then, a rule is satisfied by an interpretation if and only if every binding that

10 A Non-monotonic Expressiveness Extension on the Semantic Web Rule Language

satisfies the antecedent also satisfies the consequent.

Thus, let T =< R,LV,EC,ER,L, I > be an OWL interpretation as defined in the intro-
duction, where R is a set of resources, LV ∈ R is a set of literal values, EC is a mapping from
classes and datatypes to subsets of R and LV respectively, ER is a mapping from properties
to binary relations on R, L is a mapping from typed literals to elements of LV , and I is a
mapping from individual names to elements of EC. Then, a binding B(T) is an abstract
OWL interpretation that extends the tuple T such that I maps i-variables to elements of
EC (individuals) and L maps d-variables to elements of LV , respectively. Then, an atom is
satisfied by an interpretation T when certain condition are fulfilled. Table 2 shows the con-
ditions for all the atoms provided in this proposal, where C is an OWL class, D is an OWL
data range, P is an OWL individual-valued property, Q is an OWL data-valued property, f
is a built-in relation, x, y are variables or OWL individuals, z is a variable or an OWL data
value and S is the function given in (4) (see Section 2) which defines the truth value of the
interpretation in the KB. Note that the atoms in Table 2 contain conditions on interpretation
related to the True truth value (rows 1-4 rows and 9), the False truth value (rows 5-6) and
the equality among truth values (rows 7-8). For example, the condition on the interpretation
of atom C(x) is the existence of an individual a in the KB (mapped into the variable x by
the function I) such as there is a fact in the knowledge base asserting that a is belonging to
the OWL class C, and for this reason the function S returns T .

Row Atom Condition on Interpretation
1 C(x) I(x) ∈ EC(C) ∧ S(C(x)) = T
2 D(z) I(z) ∈ EC(D) ∧ S(D(z)) = T
3 P (x, y) < I(x), I(y) >∈ ER(P) ∧ S(P (x, y)) = T
4 Q(x, z) < I(x), L(z) >∈ ER(Q) ∧ S(Q(x, z)) = T
5 not(Q(x, z)) < I(x), L(z) >∈ ER(Q) ∧ S(Q(x, z)) = F
6 not(P (x, y)) < I(x), I(y) >∈ ER(P) ∧ S(P (x, y)) = F
7 sameAs(x, y) I(x) = I(y)
8 differentFrom(x, y) I(x) 6= I(y)
9 builtIn(f, z1, ..., zn) < I(z1), ..., I(zn) >∈ D(r) ∧ S(r(z1, ..., zn)) = T

Table 2. Interpretation Condition in Atoms

Regarding quantifiers, these provide an scope for a set of atoms which indicates how such
atoms should be evaluated according to the semantics of each quantifier. Note that it is allowed
to define atoms which are not under the scope of any quantifier (see the syntax referred to
quantifiers in Section 5.1). This is allowed in order to provide backward compatibility with the
original SWRL proposal. In that case, all these non-quantified atoms are implicitly defined
by the scope of the quantifier Exists. The semantics provided by the quantifiers Exists and
NotExists are shown in Table 3, where A is the set of the atoms scoped by the quantifier
and B is the binding function which represents a binding of the atom a with the OWL
interpretation T as previously described.

Row Quantifier Condition on Interpretation
1 Exists(A) ∀a ∈ A ∃B(a)
2 Antecedent : NotExists(A) ∃a ∈ A /∃B(a)↔ S(B(a)) = U
3 Consequent : NotExists(A) ∀a ∈ A /∃B(a)↔ S(B(a)) = U

Table 3. Interpretation Condition in Quantifiers

Jose M. Alcaraz Calero, Andres Muñoz, Gregorio Martinez, Juan A. Botia, Antonio F. Gomez Skarmeta 11

Exists quantifier produces the regular evaluation of SWRL rules since its semantics in-
dicate that the rule is satisfied if and only if all the atoms scoped by this quantifier have
a binding on the OWL interpretation I (KB). Note that a binding between an atom and
an OWL interpretation implies that the fact bound to this atom is available into the KB.
Formally, ∃B(a) ↔ B(a) ∈ KB. On the other hand, NotExists quantifier has different se-
mantics depending on its localization. Thus, in case NotExists is located in the antecedent
of the rule, it produces that all the atoms scoped by this quantifier will satisfy the rule con-
dition if there is any atom for which there is not a binding in the OWL interpretation T .
Note that the nonexistence of a binding in the OWL interpretation implies that this fact is
not available in the KB and also for this reason, it is evaluated as undefined (U). Formally,
NotExist(B(a)) ↔ B(a) /∈ KB ↔ S(B(a)) = U . Contrarily, when NotExists is located in
the consequent of a rule, it produces that all the atoms scoped by this quantifier are evalu-
ated as undefined, which implies that such facts are removed from the KB. Note that the
conditions on interpretation given in rows 2 and 3 of Table 3 are related to the Undefined
truth value. While the first case is fulfilled when any atom under the scope of this quanti-
fier matches the condition on the interpretation, the second one fulfills the condition on the
interpretation for all the atoms under the scope of this quantifier.

In order to describe the semantics associated to the new Dominance and Mutex con-
structors, let us define Ft as the conflict set composed of all the rules that are fulfilled at
the same time t. Thus, since non-monotonicity is being considered, the order in the ex-
ecution of the rules should be taken into account. The reason for this resides in that the
execution of a rule implies the re-evaluation of the truth value of the facts in the KB, and
this re-evaluation could affect in the execution of other rules. Thus, Dominance operator
is used to establish an execution order between all the rules of the conflict set. Formally,
Dominance(A,B)↔ P (A) > P (B), where P is the function which determines the priority in
the execution and A,B are rules. The rules without any dominance relationship are consid-
ered by default as the ones with the lesser priority. Then, the rule with the highest priority
is the first to be executed. Formally, ∀r ∈ Ft , ri = max(P (r)). Since ri is the one with max
priority, it is the one to be executed.

Regarding Mutex operator, this is used to exclude a rule rB from the conflict set Ft when
the rule rA associated to rB through this term has been already executed. Let us define E
as the set of rules that has been executed. Then, Mutex(rA, rB) defines that if RA ∈ E,
RB is excluded from the conflict set Ft. Formally, if Mutex(RA, RB) and RA ∈ E, then
RB /∈ Ft. Note that Mutex is not defined as a symmetric operator and for this reason
Mutex(RA, RB) /→Mutex(RB , RA).

6 Justification of the Proposed Expressiveness Extension

6.1 Negative Property Assertions

Recently, OWL 2 has added the capability to define negative property assertions in OWL
ontologies. However, the current SWRL proposal does not cover this new expressiveness and
it only enables the definitions of atoms related to positive assertions, i.e., evaluated as True
according to the function S given in (4). This fact has driven our proposal to include this
capability in SWRL rules.

This extension has been already analyzed by offering the description of this operator in
SWRL [24]. But this proposal does not describe the syntax of the extension and it leaves
aside some essential descriptions such as how to evaluate semantically this operator and how
to define an inference process to manage this expressiveness. Thus, we have decided to provide

12 A Non-monotonic Expressiveness Extension on the Semantic Web Rule Language

this expressiveness extension despite of being an operator of monotonic nature.
In the running example of Section 4, Bob can insert a preference rule to control his call

forwards. Thus, if the call service of the Bob’s room telephone is not available (e.g., the
telephone is switched off), Bob wants to receive all the calls of this room phone in his mobile
phone. This rule is depicted as follows in the SWRL abstract syntax previously exposed.
Note the presence of the operator Not in the rule:

BobPhoneFailure : Identity(Bob) ∧ AssignedOffice(?ao) ∧ assignedTo(?ao,Bob) ∧ elementAssigned(?al, ?r) ∧ Room(?r)(1)

AllocatedResource(?ar) ∧ allocatedIn(?ar, ?r) ∧ resource(?ar, ?tp) ∧ CallDevice(?tp) (2)

ServiceAvailableToElement(?sae) ∧ UserOfService(?sae, ?tp) ∧ Not(ServiceProvided(?sae, ?ts)) ∧ CallService(?ts) (3)

AllocatedResource(?ar2) ∧ allocatedIn(?ar2, Bob) ∧ resource(?ar2, ?mp) ∧ CallDevice(?mp) (4)

ServiceAvailableToElement(?sae2) ∧ UserOfService(?sae2, ?mp) ∧ ServiceProvided(?sae2, ?ms) ∧ CallService(?ms) (5)

→ (6)

CallForward(?cf) ∧ from(?cf, ?ts) ∧ to(?cf, ?ms) (7)

First line in BobPhoneFailure rule obtains the Bob identity and his room associated. Line
2 specifies the available resources in Bob’s room. These resources are limited to a call device.
In line 3 all call services out of order for this call device are obtained. This line introduces the
usage of the new negative atom to represent the services which are not provided by the device.
Analogously, line 4 obtains Bob’s mobile phone (call device) and line 5 gets the call services
available in this mobile phone. Lines 1-5 are used to describe the antecedent of the rule.
When such an antecedent is fulfilled, the line 7 is instantiated with the facts that indicate a
call forward among the call services in Bob’s room and Bob’s mobile phone. Note that this
rule cannot be expressed in the original SWRL rules since it does not allow for the definition
of the Not operator.

6.2 Not Exist Quantifier in the Antecedent

NotExist quantifier used on the antecedent of a rule has several implications on the inference
process. Firstly, this quantifier produces that atoms are fulfilled when its condition of inter-
pretation is evaluated as undefined. This truth value has sense in an OWA approach because
of it could change when new knowledge is added to the KB. This possible change on the truth
value makes NotExists a clear non-monotonic operator since its usage implies that the truth
value of all the facts in the KB should be evaluated each time. Consequently, since rules of
this nature are executed based on assumptions, when these assumptions are invalidated, the
antecedent of the rules are not fulfilled anymore and therefore, they could be retracted as an
approach for restoring the consistence in the knowledge base. For this reason, rule retraction
has to be managed in the inference process as it is later described in section 7.

The following rule UserMissing can be defined as part of our running example containing
the operator described here. The rule establishes a call forward on mobile phones for those
employees who are not located in the building:

UserMissing : Identity(?i) ∧ AlocatedResource(?ar) ∧ allocatedIn(?ar, ?i) ∧ resource(?ar, ?md) ∧ CallDevice(?md) (1)

∧ServiceAvailableToElement(?sae) ∧ UserOfService(?sae, ?md) ∧ ServiceProvided(?sae, ?ms) ∧ CallService(?ms) (2)

∧AssignedOffice(?ao) ∧ assignedTo(?ao, ?i) ∧ elementAssigned(?aol, ?r) ∧ Room(?r) (3)

∧AllocatedResource(?ar2) ∧ allocatedIn(?ar2, ?r) ∧ resource(?ar2, ?td) ∧ CallDevice(?td) (4)

∧ServiceAvailableToElement(?sae2) ∧ UserOfService(?sae2, ?td) ∧ ServiceProvided(?sae2, ?ts) ∧ CallService(?ts) (5)

∧NotExists(AssociatedLocation(?al) ∧ locatedElement(?al, ?i) ∧ location(?al, ?x) ∧ Location(?x)) (6)

→ (7)

∧CallForward(?cf) ∧ from(?cf, ?ts) ∧ to(?cf, ?ms) (8)

Jose M. Alcaraz Calero, Andres Muñoz, Gregorio Martinez, Juan A. Botia, Antonio F. Gomez Skarmeta 13

Line 1 gets the call devices associated to each identity available in the system. Note that
the mobile phone are associated to identities whereas the room telephones are associated
to rooms. For this reason, line 1 gets only the mobile phones. These devices have certain
services, and one of them is the call service obtained in line 2. On the other hand, the
rooms of each identity are provided in line 3. Each room has a call device inside (telephone),
and it is identified in line 4. In turn, these call devices have associated services, and these
services are obtained in line 5. Finally, line 6 asks for an AssociatedLocation instance in the
knowledge base whose associated identity i is the user previously identified in line 1. Line 6
is fulfilled when there is not evidence of the localization of this user in the building (there
are not AssociatedLocation instances present in the knowledge base). Then, when all these
antecedents are fulfilled, a call forward will be made in line 8 among the user’s mobile phone
and the telephone available in her office. Note that this expressiveness cannot be described
in standard SWRL and it is needed to improve the call management service.

6.3 Not Exist Quantifier in the Consequent. Removal of Knowledge

NotExists quantifier used on the consequent of a rule entails several issues on the inference
process. Firstly, the use of this quantifier ensures that the facts scoped under this quantifier
have a truth value undefined, and therefore all of them are removed from the KB. Secondly,
note again that this removal produces that all the truth values have to be processed as
assumptions since their values can change to undefined when this operator is applied. This
fact leads to the need of managing rule retraction in the inference process due to it could
cause that rules previously fulfilled, now after the execution of another rule, they are not
fulfilled anymore and they are retracted (see section 7 for a more detailed explanation).

It is worth mentioning that DL-Safe context has been extended for this reason and
this quantifier can contain unbound variables which have not been previously defined in the
antecedent of the rule. The explanation of this extension and the semantics given to these
variables will be also explained in section 7.

Hence, by the inclusion of this quantifier in the consequent, the following rule can be
expressed as part of our running example. It establishes the call service behavior when a user
is in a room located on a different floor from the one where his assigned office is located. In
this case, if the user is located in a room where there is a telephone, a call forward is done to
the telephone available in the current location and all the previous call forwards are removed.

FloorForward : Identity(?i) ∧ AssignedOffice(?ao) ∧ assignedTo(?ao, ?i) ∧ elementAssigned(?ao, ?ra) ∧ Room(?ra) (1)

∧Subsumption(?ss) ∧ Member(?ss, ?ra) ∧ Collection(?ss, ?fa) ∧ Floor(?fa) (2)

∧AssociatedLocation(?al) ∧ locatedElement(?al, ?i) ∧ location(?rb) ∧ Room(?rb) (3)

∧Subsumption(?ss2) ∧ Member(?ss2, ?rb) ∧ Collection(?ss2, ?fb) ∧ Floor(?fb) ∧ swrl : notEqual(?fa, ?fb) (4)

∧AllocatedResource(?ar) ∧ allocatedIn(?ar, ?rb) ∧ resource(?ar, ?pb) ∧ CallDevice(?pb) (5)

∧ServiceAvailableToElement(?sae) ∧ UserOfService(?sae, ?pb) ∧ ServiceProvided(?sae, ?sb) ∧ CallService(?sb) (6)

∧AllocatedResource(?ar2) ∧ allocatedIn(?ar2, ?ra) ∧ resource(?ar2, ?pa) ∧ CallDevice(?pa) (7)

∧ServiceAvailableToElement(?sae2) ∧ UserOfService(?sae2, ?pa) ∧ ServiceProvided(?sae2, ?sa) ∧ CallService(?sa) (8)

→ (9)

NotExists(CallForward(?x) ∧ from(?x, ?sb) ∧ to(?x, ?y)) (10)

∧CallForward(?cf) ∧ from(?cf, ?bs) ∧ to(?cf, ?as) (11)

First line identifies the room associated to each identity in the system. Line 2 obtain the
floor in where this room is located. Next two lines are referred to the actual location of the
user in the building, room and floor respectively. Lines 5, 6, 7 and 8 catch the call services
associated to the call devices available on each room. In case the user is located on a different
floor from his own floor, all the previous call forwards are removed, see line 10. Then, a new

14 A Non-monotonic Expressiveness Extension on the Semantic Web Rule Language

call forward will be done in the visitor room, see line 11. Note the usage of this new quantifier
in the line 10. In this line there are two different unbounded variables, ?x and ?y. These
variables represent all call forwards which have a to relationship and they are removed only
from the user’s telephone room.

6.4 Dominance Operator. Courteous Priority

Dominance operator has been designed following the courteous priority [10]. This kind of
priority offers the possibility to establish dominance relationship among rules to decide the
order in the rule execution plan. In a monotonic approach, when two or more rules can be
fired in a given time, all of them are fired because a rule execution can not invalidate the rest
of rules which are later executed. However, in non-monotonicity, one rule execution could
lead to the non-fulfillment of other rules. Then, the order can alter the output result. In this
case, a method to describe the desired execution order in rules have to be included. To this
end, the dominance operator defined in Section 5.1 offers a priority mechanism among rules.
This operator is defined as dominance(Rx,Ry) where Rx and Ry are two rule names and the
meaning is that Rx has more priority in the execution order than Ry.

It is worth mentioning that the dominance operator has been designed to establish rela-
tive dominances rather than absolute ones. In the absolute approach, a rule contains a given
priority, e.g. numerical priority, whereas in the relative approach, a relationship is created
between two rules. In absolute dominance approaches it is required that the administrator
knows the whole rule set in order to decide the assigned priority of each rule. Then, by insert-
ing new rules in the domain, the absolute priorities could require changes to accommodate the
priorities of such new rules. Contrarily, relative dominance is less sensitive against the arrival
of new rules. This fact is due to the definition of the dominance is performed by relationships
among pairs of rules and further rules can be relatively ordered with relation to a subset
of the already existing ones. This relative approach is clearly better for the Semantic Web
where new information is constantly discovered, inserted and updated. In this case, relative
dominance is more suitable for dynamic changes on the rules set. Furthermore, this kind of
dominance applies transitivity among priorities to determine the priority associated to a rule.
For example, given the priority relationships dominance(Rx,Ry) and dominance(Ry,Rz),
they imply dominance(Rx,Rz). As explained in Section 5.2, rules without a defined priority
are assigned the minimal priority and they are the latest to be executed.

In our running example, let us suppose that Bob is located in a room in Floor16 (it is
a different floor from the one where his room is located). Suppose also that Bob’s room
telephone is out of order (the service call is not provided therein). In this case, two different
rules can be fired: BobPhoneFailure and FloorForward . Thus, if Dominance(BobPhone-

Failure, F loorForward) is established , then the call forwarding to the Bob’s mobile phone
is done by the dominance of the rule BobPhoneFailure. Otherwise, if the dominance is
inversely done, Dominance(FloorForward,BobPhoneFailure), then the call forward will be
done to the telephone located in the room in which Bob is located in this moment. Note that
the dominance relationship has influence on the results obtained and it needs to be taken into
account in the inference process.

6.5 Mutex Operator

Mutex operator is used in order to establish a blocking relationship between two rules. Thus,
when one of them is already executed, the other cannot be executed (it is blocked). This kind
of relationship enables to get a fine grain control in the rule execution. Thus, Mutex(Rx,Ry)
states that Ry will not be executed in case that Rx was already executed. In order to define

Jose M. Alcaraz Calero, Andres Muñoz, Gregorio Martinez, Juan A. Botia, Antonio F. Gomez Skarmeta 15

a symmetric exclusion between two rules, a double mutex relationship has to be asserted:
Mutex(Rx,Ry) and Mutex(Ry,Rx).

In the running example of Section 4, this double Mutex relationship can be established be-
tween Mutex(FloorForward,BobPhoneFailure) rules and vice versa, Mutex(BobPhone-
Failure, F loorForward). Then, only one rule is fired and the other one will be blocked.
Note that the usage of this operator can be combined with the dominance operator so as
to determine which one of these two rules must be executed, leaving blocked the other one.
Moreover, note also that mutex and dominance operators can be used in order to control the
decidability in the inference process since they enable to block and schedule the rule execution
plan, which is a suitable feature for the inference process.

7 Non-monotonic Inference Process

Usually, inference processes over SWRL have been performed by means of rule-based engines,
which in turn, are essentially an implementation of a Rete-based [6] algorithm or another
pattern matching algorithm. Some examples of SWRL-suitable implementations are Jena
[18], Pellet [30] or Jess [7], among others. All of them are using a Rete-based algorithm to
perform the inference process of SWRL rules. The Rete algorithm is an efficient pattern
matching algorithm that creates a network of nodes in memory where each node correspond
to a condition (antecedent atom) of a rule. Then, the path from the root node to the leaf
nodes defines a complete antecedent part of a rule. Additionally, each node has a memory
of facts which satisfy that pattern (working memory). Then, when a fact or combination of
facts causes all of the patterns for a given rule to be satisfied, a leaf node is reached and
the corresponding rule is triggered. Hence, when a rule is triggered, all the atoms of the
body are processed performing the action associated to these ones. Moreover, since SWRL
is a declarative language, the associated action to these atoms is limited to process the KB,
asserting and removing facts.

The Rete-based algorithm exhibits the following characteristics: i) it reduces or eliminates
certain types of redundancy through the use of node sharing in the network. ii) it allows
avoiding complete re-evaluation of all facts each time changes are made in the working memory.
Instead, the inference process only need to evaluate the changes (deltas) to working memory.
iii) it allows for efficient removal of knowledge when facts are retracted from working memory.

The intention of this section is not to provide a new algorithm to build a highly efficient
Rete network or to provide a full description of any version of this algorithm because this is
out of the scope of this proposal. In case the reader is more interested in the algorithm to built
a Rete network, [6], [33] and [28] provide different algorithms to implement this network node
efficiently. However, this section tries to explain which are the changes that has been done
to a Rete-based algorithm in order to enable the inference process over the expressiveness
provided in this proposal. The following subsection will describe how to perform the different
adaptations over this algorithm.

7.1 Different types of α-nodes

Rete network is usually composed by α-nodes and β-nodes also called left and right nodes
or 1-input and 2-inputs nodes, respectively. On the one hand, α-nodes perform the pattern
matching between the atom of the antecedent of the rule (pattern) and the facts available on
the KB based on simple conditional tests. On the other hand, β-nodes are in charge of joining
conditions in order to minimize the size of the network and to increase the performance and
optimization (the latter are optional and used only for optimization purposes, for this reason
they are left aside in this proposal).

16 A Non-monotonic Expressiveness Extension on the Semantic Web Rule Language

In general, traditional Rete network manage one type of α-node to perform the pattern
matching of facts (refered as α+-node). However, in order to establish a Rete network suitable
for the Semantic Web, we have designed new different types of α-nodes in this proposal. In
particular, each new type of α-node performs a different test condition during the pattern
matching. Table 4 described the different α-node proposed and the condition test associated.
All of them are new ones except the α+-node provided in the original Rete network.

α-node Type SWRL Elements Pattern Matching (P) Condition Test

α+-node C(x) (?x rdf:type C) S(P) = T

D(z) (?x rdf:type D)

P (x, y) (?x P ?y)

Q(x, y) (?x Q ?y)

sameAs(x, y) (?x owl:sameAs ?y)

differentFrom(x, y) (?x owl:sameAs ?y)

α−-node (?z rdf:type owl:NegativeProperty) S(P) = F

not(P (x, y)) (?z rdf:subject ?x)

not(Q(x, y)) (?z rdf:predicate [P or Q])

(?z rdf:object ?y)

αu-node NotExist(A,B, ...Z) (A) S(P) = U

(B)

...

(Z)

αb-node builtIn(r, z1, ..., zn) N/A S(R(z1, ..., zn)) = T

Table 4. Types of α-nodes proposed

The first column of the table 4 contains the name of different types of α-nodes proposed.
Note the existence of three different α-nodes, each one associated to the evaluation of a
concrete truth value (T, F, U) and one additional α-node to process built-in functions. The
second column shows all the SWRL elements that produces the insertion of a new node of this
type in the Rete network. For example, in case a rule contains not(Q(x, y)) as atom on the
antecedent part, a new α−-node is inserted on the node network. The third column describes
the pattern that is processed in the α-node for the SWRL element associated. This pattern
is directly related to the manner in which the OWL interpretations are stored in the KB. So,
the patterns associated to the α+-node and αb-node were described in the OWL [3] standard.
The ones related to α−-node were described in the recently OWL 2 [20] proposal. Note that
the pattern contains a

PorQ

, this means that will be P or Q depending on the SWRL elements to be inserted in the Rete
network, P (x, y) or Q(x, y), respectively. The pattern related to αu-nodes does not entail any
other additional pattern matching since this node is inserted when a quantifier is processed
and this quantifier has a term under its scope (see A,B,...,Z in the table 4, they are the atoms

Jose M. Alcaraz Calero, Andres Muñoz, Gregorio Martinez, Juan A. Botia, Antonio F. Gomez Skarmeta 17

associated to this terms). Therefore, the pattern associated to the atoms of the term are the
patterns that produce the activation of the α− node. Finally, the forth column establish the
condition test that should pass the pattern in order to fulfil the α-node where S function is
the one labelled as 4. Note that these α-nodes cover all the truth values available under the
range of S function. This fact turn this set of α-nodes suitable to be used on a rule-engine
adapted to perform inference processes in the Semantic Web.

7.2 Extending DL-Safe Context

DL-Safe context has been presented in [21] in order to restore decidability in the inference
process associated to SWRL rules. This proposal imposes some limitations on the design of
SWRL rules for ensuring the decidability. Mainly, DL-Safe imposes that a variable can be
used in the consequent, if and only if, it has been previously declared in the antecedent of the
rule. This imposition prevent the appearance of unbound variables in the consequent part
because of this appearance could produce undecidability in the inference process.

Undecidability related to the usage of unbound variables is due to management done over
these variables during the inference process. Usually, when an unbound variable z is available
in a consequent of a given rule, this one is automatically bound to a new individual ID each
time the rule is activated, causing the insertion of the new facts in the KB. This new fact
could cause that the antecedent of this rule is fulfilled again and then it would enter in an
infinite execution loop which in turn, it leads to undecidability in the inference process.

However, current DL-Safe context is not suitable in OWL 2 where the representation of a
negative property assertion in the consequent of a rule force the appearance of an unbound
variable in the consequent part of the rule. As the reader can see in the table 4, the pattern
matching associated to α−-node (related to negative property assertions such as not(P (x, y)))
requires that ?z variable have to be used in the pattern matching in order to produce the
fulfilment of this node. Then, when this assertion is done in the consequent part of the rule,
this new ?z variable produces a violation of this DL-Safe context since it is being used a non
previously undeclared variable in the antecedent part.

For this reason, an extension of the DL-Safe context has been promoted. This extension
enables to use unbound variables available in α−-nodes. The unbound variables related to
negative property assertions has been syntactically hidden. Hence, ?z variable previously de-
scribed does not appear in the SWRL syntax related to elements not(P (x, y)) and not(Q(x, y))
and for this reason, this variable can not be used in any other place. Consequently, this will
not cause undecidability in the inference process due to this variable is not used in any other
place and therefore, the side effects can be controlled.

Regarding NotExists quantifier, it is also promoted the extension of DL-Safe context to
enable the definition of unbound variables in atoms that are under the scope of this quantifier.
Note that this quantifier produces the removal of knowledge from the KB. Then, in case
unbound variables appears in these atoms, the following semantics is applied: this variable
matchs with all individual ID available in the KB. Formally, being z the unbound variable
under the scope of a NotExists quantifier and a any individualID in the KB, then ∀a ∈
KB, I(z) = a being I the function previously introduced in section 5.2 which map variables to
individuals. By adopting this extension of the DL-Safe context, there is not any modification
in the content of the KB and for this reason decidability is also preserved.

7.3 Conflict Set

The conflict set is composed by the set of fulfilled rules in a given time during the inference
process. After the creation of the conflict set, the Rete algorithm should decide what is

18 A Non-monotonic Expressiveness Extension on the Semantic Web Rule Language

the next rule to be executed. In the original SWRL inference process, the order in the rule
execution was not taken into account because the output in the inference process could not
be altered by the execution order of the rules. Now, when non-monotonicity is adopted, it
might be taken into account since the output in the inference process could be affected by the
execution order.

Thus, the Rete algorithm establishes the execution order according to the information
provided by the usage of the Dominance operator. Then, after the rules have been ordered
according to the dominance information, all the rules affected by the usage of the Mutex
operator is removed from the conflict set. In case in which there is some rule with the same
priority, the order is determined by means of the rule name. This order based on the rule name
has been decided to provide a deterministic approach rather than a indeterministic random
order. Finally, the first rule in the ordered list is selected to be executed in the inference
process. Note that rule retraction is considered as negative execution of rules and for this
reason, these retracted rules are also inserted in the conflict set and ordered according to their
priority. This fact is explained in the section 7.4.

7.4 Rule Retraction

The inclusion of the capability to remove knowledge (NotExists quantifier) in SWRL lan-
guage leads to the necessity of revising the knowledge base after the each rule execution,
that is, it leads to the non-monotonicity. Then, during this revision of knowledge some rules
previously activated, now may be not fulfilled because of some of the facts that causes their
activation have been deleted. In that case, these rules have to be retracted in order to keep
the KB consistent. Rule retraction is referred as the action for which the inferred knowledge
produced by firing a given rule is dropped.

In order to achieve the rule retraction, let’s define an inverse atom A− of a given atom
A, as the atom that cause the drop of the facts produced by the execution of the atom A.
Thus, being C the set of all the atom of the consequent part of the rule R, a rule retraction
R− is defined by the execution of the inverse atoms of the all the atoms in C. Formally,
∀A ∈ C/ E(A−) being E the function that executes a given atom. Thus, a rule retraction
produces that the inverse rule R− is inserted in the conflict set. The table 5 shown all the
atoms available in the proposed language and the inverse atoms associated to be executed in
the rule retraction. For example, if an atom C(x) have to be retracted then NotExists(C(x))
might be executed.

Atom (A) Inverse Atom (A−)
C(x) NotExists(C(x))
D(z) NotExists(D(z))
P (x, y) NotExists(P (x, y)
Q(x, y) NotExists(Q(x, y)

sameAs(x, y) NotExists(sameAs(x, y))
differentFrom(x, y) NotExists(differentFrom(x, y))

not(P (x, y)) NotExists(not(P (x, y)))
not(Q(x, y)) NotExists(not(Q(x, y)))

NotExist(A,B, ...Z) A,B, ..., Z
builtIn(r, z1, ..., zn) Builtin(r−, z1,, zn)

Table 5. Relationship between rule atoms and its inverses for performing rule retractions

During the rule retraction, the execution of the inverse atoms have to be done using the

Jose M. Alcaraz Calero, Andres Muñoz, Gregorio Martinez, Juan A. Botia, Antonio F. Gomez Skarmeta 19

same facts bound to the variables that previously was causing the firing of the rule. In Rete
algorithm, the facts that produced the activation of a node in the Rete network are stored
in the own node in the so-called working memory. Then, this information could be retrieved
lately in order to perform the execution of these inverse atoms with the variables bound
accordingly.

Note in the table 5 that NotExists quantifier has as inverse atom Exists operator and vice
versa. Moreover, it is worth mentioning another change required in the inference process for
implementing rule retracting. This is the extension of the definition of the built-in functions
allowed in the consequent. Thus, r− built-in is defined as the built-in function that produces
the drop of the action produced by the builtin r. For example, built-in add could have as
inverse subtract. Hence, each built-in available in SWRL might have associated the action to
be taken in case its retraction have to be done.

Rule retraction implies again the appearance of undecidability in the inference process.
In particular, let’s suppose two rules defined as: Rx : A ⇒ B− and Ry : B− ⇒ A− being
A,B rule atoms and A−1, B− their inverse atoms. Then, just inserting A in the KB, Rx is
activated, and then, Ry is also activated. After that, Rx is retracted and consequently, Ry is
also retracted leading to the initial state. This will cause an infinite loop in the rule execution
plan which in turn, will lead in the undecidability of the inference process.

In order to control this issue, it is provided some operators related to the management of
the execution of the rules. In particular, Dominance and Mutex operators enable to perform
a fine control in the execution plan of the rules. This control is used to drive the behaviour
of the inference process according to the administrator preferences and it can be used to
establish the decidability in the inference process since these operator enable to block any
loop during the inference process. For example, the previous example can be controlled just
defining Mutex(Ry,Rx) operator. This one causes that Ry will not be fired and the loop will
be controlled.

8 Complete Scenario

This section shows all the rules described in the previous sections working together. These
rules contain all the elements provided in the new expressiveness provided in this proposal.
All of them are executed in the inference process described in the section 7. As a result,
the main intention of this section is to remark the necessity of the proposed expressiveness
extension for modelling realistic scenarios.

The scenario is composed of several parts previously described in this paper. First, the
running example exposed in section 4. This scenario represents an intelligent building with
several floors and employees which have different kinds of phone services. These services are
managed in order to perform call forwards among them. The scenario is completed with
the following additional information. Regarding the initial localization of the users across
the building, there are not location information available for Bob. Alice is initially located
in her room by means of an AssociatedLocation association among Alice and AliceRoom.
Regarding the simulation of the localization of Bob, rules B1,F4,F16,RA, RB and Break-
Service exposed in the same section are used to simulate the Bob’s presence in different
places. The complete definition of the BreakService rule is the following one:

BreakService : Identity(Bob) ∧ AssignedOffice(?ao) ∧ assignedTo(?ao,Bob) ∧ elementAssigned(?ao, ?r) ∧ Room(?r) (1)

∧AllocatedResource(?ar) ∧ allocatedIn(?ar, ?r) ∧ resource(?ar, ?cd) ∧ CallDevice(?cd) (2)

∧ServiceAvailableToElement(?sae) ∧ UserOfService(?sae, ?cd) ∧ CallService(?cs) (3)

→ (4)

NotExists(ServiceProvided(?sae, ?cs)) ∧ Not(ServiceProvided(?sae, ?cs)) (5)

20 A Non-monotonic Expressiveness Extension on the Semantic Web Rule Language

Line 1 retrieves the room assigned to Bob identity. Next line obtains the call device
available in that room. The call services offered by this call device are obtained in line 3.
For each call service, this rule causes the disabling of that call service (see line 5). This line
replaces the serviceProvided property used to establish an association toward devices and
services by the negative property. This negative property indicates the device is not providing
the service associated (out of order). Note that the BreakService can not be expressed in
standard SWRL since it contains remove and negative operators.

Moreover, the scenario is completed with the rules explained in section 5: BobPhone-
Failure, UserMissing and FloorForward. As a brief summary, while UserMissing per-
forms a call forward to users’ mobile not located in the building, BobPhoneFailure performs
a call forward to the user’s mobile in case his room telephone is out of order. Additionally,
FloorForward is carrying out a call forward to the room in which users are located in case
this room is located in a different floor from his own one.

There are one additional consequent atom that should be included in the BobPhone-
Failure rule in order to represent a real scenario. That is the removal of all the previous
existent call forwards. This atom is inserted to give a realistic aspect to the scenario, in which
at maximum, one call forward will be performed over a phone service. To this end, just the line
10 of the FloorForward is also inserted in theBobPhoneFailure rule. Moreover, a dominance
relationship from FloorForward over BobPhoneFailure is taken into account in the scenario
(this relationship was explained on section 6.4). Additionally, a mutex relationship between
FloorForward and BobPhoneFailure is supplied in the scenario (this one was introduced in
section 6.5).

The scenario is inserted in the proposed inference process in order to manage the call
forwards on the intelligent building. This insertion describes the inference process step by
step. The execution plan carry out in this process is shown in the figure 2. The figure is
composed of a set of boxes. Each one represents the state of the knowledge base. The first
box represents the initial KB. On each box, the CS (Conflict Set) is specified indicating the
fulfilled rules. Boxes are linked by means of arrows. Each arrow indicates that a rule of the
conflict set is fired/retracted. In case the label is cross out the rule is retracted, otherwise
it is fired. This arrow ends with a new knowledge base (box). Bold facts represent the new
facts with respect to the previous step and in case they are cross out, this means that have
been removed from the KB. Note that all the facts representing the scenario exposed in figure
1 and the localization of Alice in her room are not present in the initial KB represented in
figure 2 for clarity.

Firstly, since Bob is not present in the building, the rule UserMissing (see n.1 in figure
2) is fulfilled and fired. This execution causes the insertion of a CallForward(cf1) from the
Bob’s office phone and the Bob’s mobile phone. When Bob is getting back to the building,
rule B1 (see n.2 in figure 2) is fired to simulate the sensor detection and a new Associated-
Location(al1) is inserted in the knowledge base (now, Bob is located on the building). Thus,
the UserMissing rule is invalidated due to the existence of AssociatedLocation(al1) upon
Bob identity. This invalidation causes the retraction of the UserMissing (see n.3 in figure 2)
rule and in turn, that causes the deletion of the CallForward(cf1) among the Bob’s office
phone and the Bob’s mobile phone.

Now, Bob decides to visit his friend Alice using the lift to the sixteenth floor. Then Bob
is detected by the floor sensor firing F16 (see n.4 in figure 2) when he leaves the lift at floor
sixteen. This detection does not cause the fulfilment of any rule apart from the inclusion of an
AssociatedLocation(al2) instance according with the localization information. By entering

Jose M. Alcaraz Calero, Andres Muñoz, Gregorio Martinez, Juan A. Botia, Antonio F. Gomez Skarmeta 21

Fig. 2. The execution plan for the intelligent building scenario

on the Alice’s room, the room sensor detects Bob and it is fired the RA rule (see n.5 in figure
2). Again, RA produces the insertion of a new localization information represented by means
of an AssociatedLocation(al3) instance between Bob and Alice’s room. At the same time, the
Bob’s room phone is getting out of order by means of rule BreakService which replaces the
serviceProvided associated to the Bob’s room phone property by Not(serviceProvided(sp1))
(see n.6 in figure 2)

Bob is now located in the Alice’s room having his room phone out of order. In that
case, more than one rule is fulfilled at the same time. Concretely, FloorForward (defined in
section 6.3) and BobPhoneFailure (defined previously in this section) rules are candidates
to be executed. By the dominance established in the scenario, FloorForward dominates
BobPhoneFailure and this one is executed. The FloorForward rule is fired first (see n.7 in
figure 2) causing the appearance of a call forward from the Bob’s room phone to the Alice’s
room phone (CallForward(cf2)) . After that, BobPhoneFailure still remain fulfilled and
the mutex operator avoid the FloorForward to be executed.

As reader can notice, Bob is receiving all his calls independently of his location. For
example, when he is located at his office, or out of the building or even in the office of his
friend, he continues receiving calls by means of the management of the call forward service.

This scenario remarks the necessity for describing rules with more expressiveness than the
provided in standard SWRL. Most of the rules used in this scenario cannot be represented in
the standard SWRL language. Therefore, by supporting the description of these rules in this
proposal, some lacks of expressiveness have been overcome. The scenario has been successfully
tested and validated in the implemented inference process offering an added value to the
business since really the employee is more available to the customer and other colleagues by
the use of call forwards.

22 A Non-monotonic Expressiveness Extension on the Semantic Web Rule Language

9 Implementation

As a proof of concept, a prototype implementation of the non-monotonic inference processes
explained in section 7 has been developed. This implementation is named JNOMO binference
engine. JNOMO stand for Jena Nonmonotonic Extension and it is a free, open source
project released under GPL license.

Jena [18] is a Semantic Web framework which, among other features, contains a Horn-
like rule engine based on an implementation of a Rete network. This rule engine is called
GenericRuleEngine. JNOMO has extended this Jena engine by providing a new Rete net-
work implementation.

The current GenericRuleEngine has a Rete network which only enables to process α+-
nodes and αb-nodes (see Section 7). Moreover, this engine does not have any kind of scheduling
in the conflict set and it does not support rule retractions. This implementation has been
extended by JNOMO with a new implementation of this Rete network which is able to process
all the α-nodes proposed in Table 4. This extension enables to perform scheduling in the
conflict set by means of the usage of the information of the Mutex and Dominance operators
included in the proposed SWRL syntax given in Section 5.1. Additionally, this new Rete
network implementation enables to perform rule retractions enabling the execution of the
inverse atoms associated to the rule that have to be retracted.

Regarding rule syntax, the GenericRuleEngine has its own rule syntax called Jena rule
syntax. Then, a simple parser has been built in order to perform a translation from SWRL
XML syntax to this format. Moreover, this rule syntax has been extended in order to manage
all the expressiveness extension provided in this proposal, including negative property asser-
tions, NotExists quantifier and retractable built-in functions. Table 6 shows the extension
provided to the Jena rule syntax in order to enable the description of these operators.

SWRL Elements Jena Rule Syntax
C(x) (C rdf : type ?x)
D(z) (D rdf : type ?z)
P (x, y) (?x P ?y)
Q(x, y) (?x Q ?y)

sameAs(x, y) (?x owl:sameAs ?y))
differentFrom(x, y) (?x owl:differentFrom ?y))

not(P (x, y)) (?z rdf :type owl:NegativeObjectProperty))
(?z rdf :subject ?x)

(?z rdf :predicate P)
(?z rdf :object ?z)

not(Q(x, y)) (?z rdf :type owl:NegativeDatatypeProperty))
(?z rdf :subject ?x)

(?z rdf :predicate Q)
(?z rdf :object ?z)

NotExist(A,B, ...Z) notExist(A,B, ..., Z)
builtIn(r, z1, ..., zn) r(z1,, zn)
dominance(Rx,Ry) dominance(Rx,Ry)
mutex(Rx,Ry) mutex(Rx,Ry)

Table 6. Expressiveness Mapping between SWRL language and Jena rule syntax

bJNOMO is available at http://sourceforge.net/projects/jnomo

Jose M. Alcaraz Calero, Andres Muñoz, Gregorio Martinez, Juan A. Botia, Antonio F. Gomez Skarmeta 23

The parsing of the Jena rule syntax creates a Rete network composed of α-nodes according
to the parsed token, a list data structure containing all the rules ordered by priority calculated
during the parsing of the dominance operators and a list of mutex exclusions. The implemen-
tation of each of these α-nodes provides the semantics described in Table 4. Once the rule
parsing has been done, the Rete network is created in order to perform the inference process.
Then, each time a fact is inserted in the network, all the rules are evaluated in order to create
the conflict set. Such a conflict set is composed of rule activations and retractions. Afterward,
the conflict set is ordered by means of the data structures of the priorities and exclusions.
Eventually, in case that the conflict set is a non-empty set, the first rule is executed/retracted.
Otherwise, the next fact is processed.

Note that rule retraction requires the inverse atoms to be inserted in the Rete network
with the same facts bound to the atoms that caused the activation of the retracted rule.
To this end, a data structure has been implemented keeping the association of all the facts
that activated a rule (called working memory). Then, when a rule has to be retracted, its
correspondent activation facts could be retrieved from this structure to bind its variables
accordingly.

JNOMO has been implemented as a plug-in for the Jena framework. The reason to imple-
ment it as plug-in instead of a stand-alone application resides in the underlying technologies
used for its development. JNOMO has been developed using the Java endorsement mecha-
nism. This technology allows overriding Java classes with other versions of these same classes.
Then, by changing the order in which libraries appear in the classpath, other version of the
same classes can be executed. Then, by loading the JNOMO library before the Jena ones,
all the legacy systems will be able to use this new rule engine without any modification or
recompilation in the code.

Note that it is not provided any kind of performance results or performance comparison in
this proposal. The main reason is due to the best of our knowledge, there is not any other rule
engine implementations which enable the evaluation of rules with this level of expressiveness.

10 Conclusions and Future Work

This proposal has shown the necessity of a new expressiveness extension to the SWRL lan-
guage by means of a real scenario. Such an extension is aimed to define rules which could
contain a NotExists quantifier which enables to ask about the nonexistence of facts in the
KB or remove knowledge from it. Moreover, this extension also allows for the use of the
Not operator to manage negative property assertions, recently incorporated to OWL 2. Ad-
ditionally, the proposed extension permits to establish priorities and exclusions relationships
among rules. The semantics and inference process associated to this expressiveness extension
have been also explained, describing an extension of the Rete algorithm suitable to be used
in Semantic Web technologies. Finally, all the theoretical aspects have been validated by
means of a free and open source implementation of the proposed inference algorithm. This
implementation takes into account the semantics of the proposed operators and its performs
their associated inference processes.

Regarding the possible future work, it is expected to analyze the inclusion of other types
of expressiveness extensions in SWRL. For example, expressiveness extension for dealing with
temporal-related or uncertainty-related operators. In relation to non-monotonicity, another
expected step is a theoretical analysis aimed to extend this proposal in order to allow for
abductive reasoning or reasoning by default in the inference process over SWRL rules. Another
interesting line of work is the integration of the non-monotonic extensions provided in OWL
language [14, 9] with the extension described in this paper. This improvement could lead to

24 A Non-monotonic Expressiveness Extension on the Semantic Web Rule Language

a new SHOIQK expressiveness (K is referred to the K operator used in autoepistemic logics).
Another expected future direction resides in incorporating conflict detection and resolution
in the Rete algorithm. In this sense, a conflict appears when a rule causes an inconsistency
in the knowledge base, thus requiring actions to restore its consistency.

Acknowledgement

Authors thank to the the Seneca Foundation for the post-doctoral grant 15714/PD/10 spon-
soring Jose M. Alcaraz Calero and for the Funding Program for Research Groups of Excellence
04552/GERM/06. This paper has been also partially funded by the project RECLAMO (Vir-
tual and Collaborative Honeynets based on Trust Management and Autonomous Systems ap-
plied to Intrusion Management) with code TIN2011-28287-C02-02 and funded by the Ministry
of Science and Innovation of the Spanish Government.

11 References

1. Franz Baader. The Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press, 2003.

2. Sean Bechhofer. Hoolet. http://owl.man.ac.uk/hoolet/, 2005.
3. Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deborah L. McGuinness, Pe-

ter F. Patel-Schneider, Lynn Andrea Stein, and Franklin W. Olin. OWL Web Ontology Language
reference. W3c recommendation, W3C, 2004.

4. Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific American,
2001.

5. Corinna Elsenbroich, Oliver Kutz, and Ulrike Sattler. A case for abductive reasoning over ontolo-
gies. In Workshop Proceedings of OWL: Experiences and Directions Conference, 2006.

6. Charles L. Forgy. Rete: a fast algorithm for the many pattern/many object pattern match problem,
chapter Rete: a fast algorithm for the many pattern/many object pattern match problem, pages
324–341. IEEE Computer Society Press, 1991.

7. Ernest Friedman-Hill. Jess in Action. Manning Publications Co., 2003.
8. Felix J. Garcia, Gregorio Martinez, Andres Munoz, Juan A. Botia, and Antonio F. Gomez. Towards

semantic web-based management of security services. Springer Annals of Telecommunications,
63(3-4), 2008.

9. Stephan Grimm and Boris Motik. Closed World Reasoning in the semantic web through epistemic
operators. In Workshop Proceedings of OWL: Experiences and Directions Conference, 2005.

10. Benjamin N. Grosof. Prioritized conflict handling for Logic Programs. In Logic Programming:
Proceedings of the 1997 International Symposium, 1997.

11. Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin Grosof, and Mike
Dean. SWRL: A semantic web rule language combining OWL and RuleML. W3c member sub-
mission, W3C, May 2004.

12. U. Hustadt, B. Motik, and U. Sattler. Reasoning in description logics with a concrete domain
in the framework of resolution. In Proceeding of the 9th International Conference on Knowledge
Representation and Reasoning, 2004.

13. Minsu Jang and Joo chan Sohn. Bossam: an extended rule engine for OWL inferencing. In
Proceedings of RuleML 2004, volume 3323, pages 128–138, Nov 2004.

14. Yarden Katz and Bijan Parsia. Towards a Nonmonotonic extension to OWL. In Workshop
Proceedings of OWL: Experiences and Directions Conference, 2005.

15. Pavel Klinov. Pronto: A practical probabilistic description logic reasoner. In Proceeding at Inter-
national Workshop on Uncertainty, 2010.

16. Vladimir Kolovski, Bijan Parsia, and Yarden Katz. Implementing OWL defaults. In Workshop
Proceedings of OWL: Experiences and Directions Conference, 2006.

17. Yue Ma, Pascal Hitzler, and Zuoquan Lin. Algorithms for paraconsistent reasoning with OWL.
In Proceeding at 5th European Semantic Web Conference, June 2008.

Jose M. Alcaraz Calero, Andres Muñoz, Gregorio Martinez, Juan A. Botia, Antonio F. Gomez Skarmeta 25

18. Brian McBride. Jena: Implementing the RDF model and syntax specification. In Proceeding at
Semantic Web Workshop (WWW), 2004.

19. Craig McKenzie, Peter Gray, and Alun Preece. Extending SWRL to express fully-quantified
constraints. Rules and rule markup languages for the semantic, 332:139–154, 2004.

20. Boris Motik, Peter F. Patel-Schneider, and Ian Horrocks. OWL 2 Web Ontology Language:
Structural specification and functional-style syntax. W3c working draft, W3C, April 2009.

21. Boris Motik, Ulrike Sattler, and Rudi Studer. Query answering for OWL-DL with rules. Journal
of Web Semantics: Science, Services and Agents on the World Wide Web, 3(1):41–60, 2005.

22. Ignacio Nieto, Juan A. Botia, and Antonio F. Gomez-Skarmeta. Information and hybrid archi-
tecture model of the OCP contextual information management system. Journal of Universal
Computer Science, 12(3):357–366, 2006.

23. Jeff Z. Pan, Giorgos Stoilos, Giorgos Stamou, Vassilis Tzouvaras, and Ian Horrocks. f-SWRL: A
fuzzy extension of SWRL. In Prooceding at International Conference on Artificial Neural Networks,
2005.

24. Peter F. Patel-Schneider. A proposal for a SWRL extension towards First-Order Logic. Technical
report, W2C, 2005.

25. Peter F. Patel-Schneider, Patrick Hayes, and Ian Horrocks. Owl web ontology language semantics
and abstract syntax. W3c recommendation, W3C, http://www.w3.org/TR/owl-semantics/, 2004.

26. Alfonso Sanchez-Macian, Encarna Pastor, Jorge E. de Lopez Vergara, and David Lopez. Extending
SWRL to enhance mathematical support. Web Reasoning and Rule Systems LNCS, 4524:358–360,
2007.

27. SCBIR. Protg. SWRL temporal builtins. http://protege.cim3.net/cgi-
bin/wiki.pl?SWRLTemporalBuiltIns, Nov 2007.

28. Florian Schmedding, Nour Sawas, and Georg Lausen. Adapting the rete-algorithm to evaluate
f-logic rules. Advances in Rule Interchange and Applications, 4824:166–173, 2007. LNCS.

29. Kunal Sengupta, Adila Krisnadhi, and Pascal Hitzler. Local closed world semantics: Grounded
circumscription for owl. In Proceesing at The 10th International Semantic Web Conference, 2011.

30. Evren Sirin, Bijan Parsia, Bernardo C Grau, Aditya Kalyanpur, and Yarden Katz. Pellet: A
practical OWL-DL reasoner. In Elsevier, editor, Web Semantics: Science, Services and Agents on
the World Wide Web, volume 5, pages 51–53, 2007.

31. Chunming Rong Mark Musen Tomasz Wiktor Wlodarczyk, Martin O’Connor. Swrl-f - a fuzzy
logic extension of the semantic web rule language. In Proceeding at the 9th International Semantic
Web Conference, 2010.

32. Dmitry Tsarkov and Ian Horrocks. FaCT++ description logic reasoner: System description. In
Springer, editor, Proc. of the Int. Joint Conf. on Automated Reasoning, volume 4130 of Lecture
Notes in Artificial Intelligence, pages 292–297, 2006.

33. Ian Wright and James Marshall. The execution kernel of rc++: Rete*, a faster rete with treat as
a special case. International Journal of Intelligent Games and Simulations, 2(1):36–48, 2003.

