
Towards an Architecture for Deploying Elastic

Services in the Cloud

Johannes Kirschnick
*1

, Jose M. Alcaraz Calero
*1,2

, Patrick Goldsack
*1

, Andrew Farrell
*1

Julio Guijarro
*1

, Steve Loughran
*1

, Nigel Edwards
*1

, Lawrence Wilcock
*1

*1

Cloud and Security Laboratories

Hewlett Packard Laboratories

BS34 8QZ Bristol

United Kingdom

Email: {johannes.kirschnick, jose.alcaraz-calero, patrick.goldsack, andrew.farrell,

julio_guijarro, steve.loughran, nigel.edwards, lawrence_wilcock}@hp.com

*2

Communications and Information Engineering Department

University of Murcia

30100 Murcia Spain

Email: jmalcaraz@um.es

Abstract

Cloud computing infrastructure services enable the flexible creation of virtual

infrastructures on-demand. However, the creation of infrastructures is only a part of the

process for provisioning services. Other steps such as installation, deployment,

configuration, monitoring and management of software components are needed to fully

provide services to end-users in the cloud. This paper describes a peer-to-peer

architecture to automatically deploy services on cloud infrastructures. The architecture

uses a component repository to manage the deployment of these software components,

enabling elasticity by using the underlying cloud infrastructure provider. The life-cycle

of these components is described in this paper, as well as the language for defining

them. We also describe the open source proof-of-concept implementation. Some

technical information about this implementation together with some statistical results

are also provided.

Keywords: cloud computing, automated service deployment, service provisioning,

elastic services

1. Introduction

Cloud computing infrastructures enable the flexible creation of virtual infrastructures

on-demand in a pay-for-use model. Organizations such as government, universities and

businesses can use these resources in a very flexible manner, by changing the quantity

of the rented compute resources to match the actual needs. This new business model

promises a reduction of IT infrastructure costs: given that today most IT service

infrastructures are provisioned to cope with peak demand, if the excess capacity is

rarely needed, the investment is wasted. Renting virtual resources from a cloud provider

allows organizations to treat infrastructure as a commodity, leaving them to focus on

how to provision and manage the services running on top of this infrastructure.

However, the creation of virtual infrastructures is only a part of the process for

provisioning services. Other steps such as installation, deployment, configuration,

monitoring and management of software components are needed to provide an end-user

with a consumable service in the cloud.

Most cloud providers today offer the ability to start a variety of virtual machines,

differentiated by selecting the virtual machine image to boot, but usually no further

software deployment services. The process of customizing an image to provide a

specific service can be split into two approaches, a static and a dynamic approach. The

static approach requires an image which contains the appropriate software is pre-

configured such that it starts automatically after booting. The dynamic approach relaxes

these constraints and allows the image to be customized after it has been started.

The static approach to customization of volume images depends on operations staff to

create a volume image prior to deployment, in which the operating system and all the

services to be provided are already installed and properly configured according to the

requirements of the organization. This approach creates standardized images that can be

reused to deploy similar variants of the service, but has many limitations. Firstly, the

operation staff needs to perform the installation and configuration of all the required

services manually. Secondly, images must be maintained on a frequent basis, applying

patches for security and other reasons. Thirdly, each time the image is changed, the new

version has to be uploaded to the cloud provider. This might be very time consuming

since a typical volume can easily be many GBs and must be transferred over the

Internet. Finally, it is difficult to offer flexibility in configuration, since every

configuration option leads to a possible new image that needs to be created, uploaded

and maintained by the operations staff.

The dynamic nature of cloud computing means that properties of the infrastructure, such

as IP addresses or hostnames of machines, are unknown prior to deployment. So, the

complete automation of the provisioning process needs to take into account of late

binding of such properties.

Our approach is the dynamic installation and configuration of software components

after the machines have started. This approach has several advantages. Firstly,

everything is done automatically, reducing the time to provision the services. Secondly,

only the required software packages rather than the whole volume image needs to be

sent though the network, making the deployment process much more agile. Finally, the

maintenance of the base volume image is done by the cloud provider themselves.

We use the SmartFrog framework (Goldsack, et al. 2009). In previous work it has been

used to enable the automatic installation, configuration and deployment of services in

distributed environments. In this paper, we describe how we extended and adapted the

framework for cloud environments.

The main contribution of this paper is to describe an architecture that enables the

automatic provisioning of services in the cloud. In this architecture, the creation of

virtual infrastructure is part of the deployment of services. The architecture provides a

new life-cycle model that fits well with cloud environments and deals with new features

such as elastic services. The proposed architecture has been designed considering

service provisioning in cloud infrastructure as a critical service. Thus, it is a fully

distributed, extensible and scalable architecture with no central point of failures.

The remainder of this paper is structured as follows: Section 2 describes some related

work on automated provisioning of services. Section 3 describes the architecture to

carry out the automated provisioning of services in the cloud. Section 4 describes the

language used to describe the services to be deployed.Section 5 describes how a new

service is managed in the architecture. Section 6 explains how the provisioning of

services is carried out. Some implementation aspects are described in section 7. Section

8 provides some experimental performance and scalability results. Finally, section 9

gives some conclusions and discusses future work.

2. Related Work

In recent years there have been several tools developed for automated provisioning of

services in distributed environments. For example, PUPPET (Turnbull 2007) and

CHEF (Jacob 2009) are software solutions to automate the installation and

configuration of software in distributed environments. They are client-server

architectures in which an orchestrator or server is in charge of controlling the

provisioning of the services deployed into a set of computers or clients. Even more

recently, Control-tier (DTO Solutions 2010) and Capistrano (Frost 2009) have been

released as additions to both PUPPET and CHEF respectively, providing orchestration

capabilities over the installation and configuration processes. Another solution is

CFEngine3 (Burgess 2009), a client-server architecture for installing software

components in a distributed environment.

All these tools solve the problem of deploying software in distributed environments, but

they do not take into account several requirements associated with cloud infrastructures.

Firstly, they do not cover the creation of the virtual infrastructure as part of the

deployment process. Secondly, they do not deal with the ephemeral nature and scope for

rapid change to cloud infrastructures; instead they assume pre-existing fixed sets of

resources. Thirdly, deployment of services is mission-critical and needs to be highly

scalable in cloud scenarios, so this service cannot have a single central point of failure

and bottleneck ,as is the case in traditional client-server architectures.

In addition to the above, some work has been done by cloud vendors themselves and

third parties to assist in provisioning of services. For example Amazon offers pre-

configured base volumes which correspond to specific services such as Amazon Elastic

Map-Reduce (Amazon 2010). Additionally, third parties like CohesiveFT (CohesiveFT

2010) enable images to be created and configured dynamically based on preferences

which can afterwards be uploaded to cloud infrastructure providers. Scalr (Scalr, Inc

2010) is a recent web based solution which offers a pre-defined catalog of services

which can be automatically deployed, installed and configured into a virtual on-demand

infrastructure using the Amazon EC2 (Amazon Inc. 2009) cloud provider. This is the

closest approach to the solution provided in this paper. However, Scalr is closed since it

does not provide any way to extend the catalog of services to be deployed. It does not

offer fine-grain control over the configuration of the deployed services. Moreover, to

the best of our knowledge the Scalr architecture has not been published, hampering

evaluation by the scientific community.

The architecture described in the paper has been designed to be suitable for cloud

environments, overcoming the limitations described above. Thus, our architecture is a

totally distributed peer-to-peer network providing a highly reliable scalable architecture

with no single central point of failure. This makes our solution better for providing a

critical cloud provider service such as the automated provisioning of services.

Moreover, it deals with infrastructure provisioning as part of the service deployment, as

well as elasticity over deployed services. It is open source and extensible with new

components.

3. System Architecture

This section describes our architecture for automatic provisioning of services in the

cloud. Figure 1 gives an overview of the stack of logical layers and tiers available in the

architecture.

Cloud Provider

Management

User

Template Designer

SmartFrog

Daemon

Infrastructure

Manager

VM VMVM...

Physical

Machine ...
Physical

Machine

Physical

Machine

IaaS API

Virtual Infrastructure

Physical

Machine

Component

Repository

Service API

D
e

s
ig

n

T
ie

r
M

a
n

a
g

e
m

e
n

t

T
ie

r

C
lo

u
d

 I
n

fr
a

s
tr

u
c
tu

re

T
ie

r

Programmatic

Access
Service

Catalog

SF SF SF

Figure 1. Architecture Overview

The architecture is divided into three tiers. The Cloud Infrastructure Tier provides the

entry point to the cloud provider, enabling the creation of virtual on-demand

infrastructures. Cloud infrastructure providers utilize many physical resources to deliver

virtual infrastructures. Currently, there are a number of different commercial vendors

with comparable infrastructure offerings, such as Amazon EC2 (Amazon Inc. 2009),

Rackspace, Hexagrid Computing, GoGrid, Flexiscale, ElasticHosts, etc. Even though

the offerings differ, all of them have at least in common the ability to dynamically

create and destroy virtual machines. This is known as Infrastructure as a Service (IaaS).

The functionality for managing these virtual infrastructures is provided by an API (IaaS

API). Usually, this API is provided directly by the cloud vendor provider being exposed

at a well-known URL address. Due to its critical nature, the IaaS API should be

published as highly reliable service with load balancing, fault tolerance and scalability

features. These features are usually implemented and controlled by smart management

of DNS.

The Management Tier is the core layer of the architecture. It carries out the automatic

provisioning of services in the virtual on-demand infrastructures. The tier is composed

of the SmartFrog Daemon and the Infrastructure Manager component. The

Infrastructure Manager manages, creates and destroys virtual infrastructures, providing

a common interface across different existing cloud providers. The SmartFrog Daemon

is the entry point to the peer-to-peer architecture that enables the distribution of the

software services among all the peers, automatically provisioning services in such peers.

Each SmartFrog Daemon uses a Component Repository which contains the set of

components that can be automatically deployed; it can be extended with new service

components, thus increasing the number of deployable services.

The Management Tier is distributed across all the virtual machines provided by the

IaaS. Each virtual machine in the cloud infrastructure has installed the SmartFrog

Daemon and optionally can provide the Management and Design Tiers shown in Figure

1.

The communication model used between SmartFrog Daemons is based on unstructured

peer-to-peer communication without a discovery process. This requires that each

daemon has to know the IP address of its peers. These IP addresses are provided by the

SmartFrog daemon in the Management Tier: since it creates each new VM it has access

to the metadata including the IP addresses for those VMs. When a daemon receives a

system description from a user, it is distributed among all the peers according to the

deployment information available in the description. This communication model is

described in section 6 which explains how the Management Tier carries out automatic

provisioning of services.

The Management Tier offers a Service API to clients. This API provides clients with the

ability to define the services to be deployed automatically in the architecture. This

Service API uses the System Description Language, explained in section 4, to describe

such services.

Note that the Management Tier has to connect to the SmartFrog Deamon running on the

created Virtual Machines (VMs). The existence of a SmartFrog daemon running on a

VM is the only precondition for a VM to work within the architecture, being a common

endpoint for accessing inside each of the VMs. To achieve this precondition, the volume

image used for these VMs need to have the SmartFrog Daemon installed and

configured therein, being automatically run during the boot process.

The user submits a System Description of the services to be deployed using the Service

API exposed in the architecture, which in turn, triggers automatic deployment. Although

the SmartFrog Daemon has to be necessarily running in all the VMs, the number of

VMs which exposed the Service API of the Management Tier can be directly

determined by the user according to its requirements (at least one is required to enable a

user entry point). Note that having the Management Tier running in multiple VMs

together with a smart DNS management provides load balancing, scalability and fault

tolerance.

The System Description can be generated either programmatically or by using any text

editor. The Design Tier provides a Template Designer to aid creation of System

Descriptions. This Template Designer is a smart code editor, with code completion and

syntax highlighting features, among others. The Template Designer also manages

different preconfigured System Descriptions in a Service Catalog.

4. Service Description Language

This section describes the Service Description Language (SDL). This language is used

to describe the different services to be deployed in the cloud infrastructure. The syntax

and semantics of this language was described in detail in our previous work (Goldsack,

et al. 2009). So this section focuses on the description of the new language features to

control the development of services in the cloud.

To illustrate the use of our system we use an example consisting of a system description

composed of two Virtual Machines provided by the Amazon EC2 cloud provider. The

first virtual machine contains a Mysql database configured according to some

predefined parameters. The second contains an Apache Tomcat application server with

the MediaWiki application installed. The MediaWiki uses the MySQL database to

provide persistence. Figure 2 shows the System Description in SDL of this example.

#include "softwarecomponents/definitions.sf";
#include "cloudprovider/definitions.sf";

AmazonVM extends VM {
 cloudProvider "AmazonEC2";
 vol-image “ubuntu-sf”;
 }

sfConfig extends {

 vmA extends AmazonVM {
 software extends VirtualSoftwareComponent {

sfProcessHost LAZY PARENT:ip;
 mysql extends Mysql {
 user "joey";
 port 30388:

}
 }
 }

 vmB extends AmazonVM {
 software extends VirtualSoftwareComponent {

sfProcessHost LAZY PARENT:ip;
tomcat extends Tomcat {
 port 80;
 https true;

 https-port 443;
 apps extends applications {
 mediaWiki extends MediaWiki{

 db LAZY PARENT:PARENT:vmA:software:mysql;

 }
 }
}

 }
 }
}

Figure 2. Running Example described using the Service Description Language

A System Description is composed of Component Descriptions. A Component

Description is defined as a software service managed by the system, e.g. Mysql. A

Component Description is a set of key/value pairs of attributes which represent the

configuration parameters of the component that represents this description. A

Component Description is always associated with a Component. A Component’s

manager is implemented in SmartFrog by a Java class. The association of description to

component-manager is done using a well-known attribute called sfClass. A Component

Description can inherit the attributes from other Component Descriptions using the

reserved word extends. For example, Figure 3 shows a fragment of the System

Description from Figure 2 in which an instance of a Mysql component (definition from

one of the include files, not shown) is (re-)used with some parameters configured. Note

that the mysql instance not only contains the specified parameters but also contains all

the parameters inherited from the Mysql component description, which in turn, contains

the sfClass attribute that associates the mysql instance with the Java class to manage the

Mysql component. This way of defining services enables a high-level description of

components hiding low-level details.

mysql extends Mysql {
 user "joey";
 port 30388:

}

Figure 3. Fragment of the running example shown in Figure 2

A Component Description can contain other Component Descriptions as part of its

definition, creating a parent/child relationship. This is a key concept in the architecture.

The language requires the root parent called sfConfig which acts as the entry point to the

System Description. As a result, the System Description is always a hierarchical

description of components to be deployed.

Figure 2 shows a System Description in which two virtual machines (VM components)

are instantiated. The VM component creates a VM on Amazon EC2 using a volume

image in which SmartFrog is run during system boot. The VM descriptions contain

VirtualSoftwareComponents. The VirtualSoftwareComponents represent the different

software components that will be deployed in the VMs. Note the usage of the attribute

sfProcessHost. This special attribute is used by SmartFrog framework to distribute the

Component Descriptions across the different peers in the architecture and it determines

on which host, in this case a VM, the Component Description is processed. This

attribute is defined as defined as LAZY PARENT.ip in the running example. A LAZY

reference is a reference which is resolve during run-time (late binding). This value is

resolved with the IP address of the VM once it has been created by the cloud

infrastructure provider. This resolution method avoids the need for a discovery protocol

for SmartFrog peers since all the involved IPs are resolved by the component-manager

responsible for creating virtual machines. In our running example, a Tomcat application

server with the Wikimedia application is deployed in vmB and the Mysql database is

deployed in vmA. The LAZY reference to vmA defined in the Wikimedia application so it

can use the Mysql component as persistence layer. This reference is resolved after the

deployment of the MySQL component. A Java class is associated with each component,

implementing the component-manager to control the component life-cycle including

installation, configuration, execution and termination. Details are explained in section 5.

Node C

VirtualSoftware

Component

Tomcat

WikiMedia

Node B

VirtualSoftware

Component

MySQL

Node A

VM VM

sfConfig

db

Figure 4. Hierarchical Representation of the Running Example

Figure 4 is the hierarchical tree of the Component Descriptions in Figure 2. There are

three different nodes in this tree. Node A is the VM running the Management Tier (see

Figure 1) to which the System Description has been submitted and Nodes B and C are

the virtual machines created on-demand into the cloud provider. Note that NodeA sends

the VirtualSoftwareComponent descriptions to Nodes B and C to be processed once they

have been created. Further details of these mechanisms are provided section 6. The

hierarchical tree of the components is important in the architecture as it affects the life-

cycle of the different components, for example if a parent is terminated, all children are

terminated.

With respect to our previously published work the new features reported here enable us

to define VMs, VirtualSoftwareComponents and Cloud Providers in the System

Description to drive the creation of a virtual infrastructure and the deployment of

services within that infrastructure.

5. Component Management

Management Tier has a component repository with all the components managed in the

system. A component-manager is defined by a Java class. A Component Description

usually contains some predefined attributes including the sfClass attribute to associate

the component description to the Java class of the component-manager which controls

the life-cycle for a component in the framework. The architecture is extensible, adding a

new component requires a new component description and component-manager.

Figure 5 shows the state diagram of the life-cycle for a component in the framework and

the methods associated with each state transition. Initially, a component is deployed in

the target system by means of the deploy method. The deployment usually includes the

installation and configuration of the component. After that, the component is started in

order to provide the service. While the component is running, it could be reconfigured.

And finally, the component is terminated. The state diagram defines the Java interface

to be implemented by a new component manager: deploy, start, terminate and

reconfigure actions.

Instantiated Deployed Running Terminated

deploy start terminate

failure

reconfigure

Figure 5. Component Life-cycle

As an example, Figure 6 shows a simplified version of such Java class which

implements the VM component manager used for creating virtual machines in a cloud

provider. The Deploy method of a VM, instantiates a CloudAPI Factory corresponding

to the cloud provider specified in the Component Description and a new VM is created

and booted. Note that the VM is booted during the Deploy transition rather than during

the Start transition. This is because the VMs have to be booted to allow the deployment

of other components on these VMs. The IP address of the new VM is added to the

attributes of the VM component. Finally, the terminate method destroys or shutdown the

VM in the cloud provider.

import cloudapi.*;

public class VM extends Compound{

 CloudAPI facade;

 public void sfDeploy(){
 String cloud = sfResolve(“cloudprovider”);
 facade = CloudAPIFactory.getFactory(cloud);
 String ip = facade.createAndBootVM(sfName);
 sfAddAttrbute(“ip”,ip);
 }

 public void sfStart(){
 }

 public void sfReconfigure(){
 }

 public void sfTerminate(){
 if (facade != null){
 facade.destroyVM(sfResolve(“ip”));
 }
 }
}

Figure 6. Simplified Java class of the VM component-manager

Software component-managers usually implements the deploy method calling external

APIs to packages installation software such as apt-get, yum, synaptics as well as

generate configuration files, XML templates and INI templates. These component-

managers usually implements the start method calling batch scripts, .exe files, bash

scripts, etc. whereas they implements the terminate method calling uninstall facilities,

stop scripts, etc.

6. Provisioning Services in the Cloud

To explain how the Management Tier carries out the automatic provisioning of services,

let’s consider a use case in which the user submits the System Description example

depicted in Figure 2.

The user can submit the System Description in any VM in the system which has the

Management Tier installed therein. There is no single, central point to which they have

to send the System Description. Let suppose NodeA is this VM. The SmartFrog daemon

in NodeA receives the System Description and parses it generating the hierarchical tree

of component shown in Figure 4. Then, this tree is processed in NodeA using a

breadth-first search algorithm for processing the deployment of each component.

This algorithm establishes the communication model between the peers. For each tree

node (component), the SfProcessHost value is retrieved and both Java class and

Component Description associated with the component are sent to the peer specified in

the SfProcessHost (localhost if it is not defined). Regardless of whether the component

description is processed locally or remotely in another node, the parent has to wait for

the successful deployment of such child nodes. To this end, it uses a synchronous

remote method invocation (RMI) programming model matching.

The algorithm shown in Figure 7 is the pseudo-code of this distribution algorithm. In

essence, breadth-first is a recursive function which processes an action on the parent

node. After that, it retrieves all its children and for each child node determines where it

should be processed using the sfHost attribute. As a result, it is recursively processed at

the correct destination. Note that host.breadth-first is a RMI invocation which causes

that parent component to wait until all the child components have executed the same

action.

function breadth-first(root, action){
 // First perform action on the parent component (deploy and start)
 root.execute(action);

 //Then, perform action on the children components
 childrenComponents = getChildren(root)

 for each childComponent in childrenComponents{
 host = getSfProcessHost(childComponent);

if (action = “DEPLOY”){
 send(childComponent, host);
}

 host.breadth-first(host,action);
 }
}

Figure 7. Breadth-first search algorithm used to deploy and execute components

The pseudo code designed as entry point for performing the automated provisioning of

services in cloud architectures is shown in Figure 8. Note that deployment and starting

of services are always executed sequentially. Then, an event handler is registered

processing Stop signals to do a clean termination applying a post-order depth-first

search algorithm and Reconfigure signals doing an update of the component

descriptions applying the breadth-first search algorithm.

function main(systemDescription){
 root = parseTree(systemDescription);
 breadth-first(root, “DEPLOY”);
 // at this point all the services has been deployed remotelly.
 breadth-first(root, “RUN”);
 // at this point all the services are runnin

 registerEventHandler(new EventHandler(){
 function terminate(){
 post-order depth-first(root,”END”);
 }
 function update(){
 breadth-first(root, “UPDATE”);
 }
 }

Figure 8. Pseudo code for performing the automated provisioning of services

Although SmartFrog allows different patterns for orchestrating the life-cycle

components, a specific one is used in this work. Our lifecycle pattern creates a virtual

cloud infrastructure as part of the automatic provisioning of services. The life-cycle uses

the hierarchical tree of component and applies the following rules over it:

 The deployment process is defined as the transition between Instantiated and

Deployed states. It is done following breadth-first processing. Firstly, the parent

is deployed. Secondly, all the children are deployed. After that, all the children

of these children are deployed and so on. In our running example, depicted in

Figure 4, the VMs have to be deployed to start the deployment of the software

components therein (and Tomcat before Wikimedia).

 All components have to be in state deployed before starting the running process

and all the components have to be in running state before termination of any of

such components.

 The running process (transition between Deployed and Running states) is also

done following a breadth-first pattern. In our running example, the Tomcat has

to be in state running before the start transition is initiated on the MediaWiki

component.

 A LAZY reference can produce a reordering of the node processing search

algorithm to resolve the reference

 The terminating process (transition between running and terminated states) is

done following a post-order depth-first pattern. Firstly, all the leaves of the tree

are terminated and removed from the tree. Then, all the tree leaves are

terminated and removed from the tree and so on. In our running example, the

Wikimedia has to terminate correctly in order to enable Tomcat and MySQL

component to terminate be correctly and then terminate the VM components and

so on.

The implemented life-cycle algorithm is able to receive updates of the System

Description once it has been deployed and running. This feature makes the architecture

suitable for dealing with elastic services. The following rules are applies over changes

between the old and the new System Descriptions:

 If there is a new software component description, it is deployed and executed

following the previously described algorithm.

 If there is an update of a software component description, the “UPDATE” signal

is distributed.

 If there is an old software component not available, then it is send a

“TERMINATE” signal to such components following the post-order depth-first

search algorithm.

This makes it easy to insert or remove a new VM component description to/from the

System Description.

Figure 9 shows a sequence diagram of the deployment. The SmartFrog framework in

the Management Tier runs on NodeA and is shown as SmartFrogA in the figure. When

the System Description is parsed by SmartFrogA, the two VMs are firstly visited in the

breadth-first algorithm. The host in which these components have to be executed is not

specified (sfProcessHost attribute). By default, localhost is assumed. The deploy

method of these VM components is invoked which creates two new VMs in the Amazon

EC2 cloud provider by means of the usage of the IaaS API. From this point, NodeB and

NodeC are available since these VM run SmartFrog during the boot process. The

SmartFrog daemons running in these VMs are shown as SmartFrogB and SmartFrogC

in Figure 9. All the children nodes are retrieved for each VM component, i.e. a

VirtualSoftwareComponent on each VM. These children have to be executed in

SmartFrogB and SmartFrogC, respectively. Then, the whole tree branch of the

VirtualSoftwareComponent is submitted to these hosts to be processed distributedly.

NodeB parses the hierarchical tree received and firstly visit the Mysql component using

the breadth-first algorithm. The deploy method of this component uses the apt-get

package repository to install Mysql and create a configuration file for the database.

Analogously, NodeC parses the hierarchical tree received and firstly visit the Tomcat

component using the breadth-first algorithm. The deploy method of this component uses

the apt-get package repository to install Tomcat and generate the configuration files

according to the information available in the Component Description. Finally, the

children of Tomcat node are retrieved. According to the Component Description, the

MediaWiki has to be deployed in the same machine so its deploy method is invoked.

This method uses the SCP command to remotely copy MediaWiki war file from a

remote software catalog to the Tomcat application directory. Moreover, the

configuration files are generated for use with the Mysql as database. The LAZY

reference enables the MediaWiki component to inspect the attributes available in the

Mysql component, so it can retrieve the information needed to connect to the database.

Client serviceAPI

deploy(systemDescription)

SmartFrog_A

deploy(description)

SmartFrog_B

parse()

FOR EACH rootComponent

extractHost()

deploy()

MySQLComp

(VMs): getRootNodes()

VMComponent IaaS API

createVM()

getChildren()

FOR EACH child

extractHost()

send(componentDescription)

SmartFrog_C

deploy(componentDescription)

send(componentDescription)

TomcatComp

deploy(componentDescription)

getChildren() getChildren()

WikiComp

FOR EACH child
extractHost()

deploy(componentDescription)

Figure 9. Sequence Diagram of the Running Example Deployment

When the deployment of all components is complete, they are started automatically

using an analogous breadth-first algorithm. Finally, when eventually the user submits a

terminate signal to the service API all the components are terminated using a post-order

depth-first search.

7. Implementation

The peer-to-peer architecture described in this paper has been prototyped. SmartFrog

has been released as LGPL license under the SmartFrog
1
 Sourceforge project. The

SmartFrog release has more than thirty different components. This framework provides

scalability and avoids a central point of failure due to its peer-to-peer architecture.

Moreover, it deals with security aspects like mutual authentication of all the peers and

encrypted communications. The VM component described in this work has been

prototypes to support EC2 and an internal-to-HP cloud platform, SUP (Service Utility

Platform).

Regarding the Design Tier implementation, a Template Designer has been prototyped as

a proof of concept for both integrated development environments (IDEs): Eclipse and

Netbeans. This Template Designer has been designed as a plug-in to aid in the

development of System Descriptions. These plug-ins provide code auto-completion and

syntax highlighting, among other features. They enable the direct execution of the

SmartFrog framework from the IDE making easy the testing and debugging processes.

The plug-ins are also available in the SmartFrog Sourceforge project. Figure 10 shows a

snapshot of the plug-in for Eclipse IDE showing an screenshot of the example used in

this paper.

Figure 10. Snapshot of the SmartFrog Eclipse Plug-in

8. Performance

We implemented a test environment on SUP to investigate the performance of the

architecture. We used the Mysql/Tomcat example described previously, varying the

number of VMs in which the Wiki-based portal service is deployed. The intention is to

investigate how efficiently the system reacts when the service has been scaled due to,

for example, an explosion in the number of simultaneous requests. The number of VMs

1
 SmartFrog is available at www.smartfrog.org

occupied by Mysql and Tomcat/WikiMedia components was adjusted. The number of

VMs deployed where kept in the ratio 1:2 with respect to Mysql and Tomcat services, so

one Mysql VM provides support for two Tomcat VMs. Note that both Mysql and

Tomcat components allows load balancing and this is how these service are deployed.

The Cloud architecture is composed of 6 physical dedicated servers which are capable

of managing up to 30 virtual machines. Each physical server has the following setup:

Intel Core 2 Quad (4 Cores + 4 Threads) 3.0Ghz, 12MB cache, 1333 FSB, 8Gb RAM, 2

TBytes SATA2 HDD in RAID 0 (2 HDD 1 TBytes). Each server runs SUP, the HP IaaS

solution running over XEN as a virtualization layer.

Figure 11. Performace Results for the automated deployment of a Wikimedia Service

Figure 11 shows a constant trend in the time required to distribute all the software

components among all the peers in the network which validates the efficiency of the

communication model established among all the peers in the network. Between 1 and 5

VMs the creation time varies only slightly, as only one VM is deployed in each physical

machine (6 servers total available). For more than 5 VMs, the infrastructure creation

time increases roughly proportional to the number of VMs created on each physical

server. Service deployment time follows also the same trend. This result shows that the

time for infrastructure creation and service deployment is driven by the number of VMs

assigned to each physical machine, which is an artifact of the parallel deployment

supported in the architecture. A sequential deployment strategy would produce a linear

increase with the number of deployed VMs and components..

9. Conclusions and Future Work

A peer-to-peer framework for automated provisioning of services using virtual cloud

infrastructure has been described. This main added value of this framework is the

incorporation of virtual resource allocation to the software deployment process. A

Service Description Language has been presented which describes the individual

software components needed to provision a service, and how they are deployed and

configured. This language has been enhanced to capture topology information which

describes the allocation of software components to virtual machines. The framework

interprets this information to dynamically create the resources using a cloud provider.

The framework relies on a peer-to-peer architecture for fault tolerance and scalability:

there is no single point of failure and new nodes can be added dynamically.

A prototype has been implemented. The prototype has been designed to be extensible. It

supports the incorporation of multiple different cloud vendors into which services can

be deployed. Furthermore, new software components can be added to the central

component repository, thus extending the number of services that can be dynamically

managed by the framework. The use of the Service Description Language provides a

high degree of flexibility for describing the configuration of services before the

deployment. This eliminates the need for preconfigured environments. The component

repository allows existing components to be reused in subsequent service definitions.

Additionally, Eclipse and Netbeans plug-ins have been developed to facilitate the

creation of new Service Descriptions. They support amongst other features, syntax

highlighting and code auto-completion. The plug-ins can communicate with the

SmartFrog Service API and thus can be used to start the deployment of services from

inside of the Integrated Development Environments (IDE).

In future work, we plan to look at the incorporation of self-management capabilities into

the automatic provisioning of services. This includes finding methods for detecting and

mitigating service level violations such as software failures, outages or overload

situations.

10. Acknowledgement

Jose M. Alcaraz Calero is supported by the Fundacion Seneca under the post-doctoral

grants and the project 04552/GERM/06 and the European Commission under the project

FP7- CIP-ICT-PSP.2009.7.1-250453 SEMIRAMIS..

11. References

1. Amazon. Amazon Elastic Mapreduce. 2010.

http://aws.amazon.com/elasticmapreduce/.

2. Amazon Inc. Amazon EC2. 2009. http://aws.amazon.com/ec2/.

3. Burgess, Mark. "Knowledge Management and Promises." LNCS Scalability of

Networks and Services 5637 (2009): 95-107.

4. CloudKick. LibCloud. 2010. http://incubator.apache.org/libcloud/.

5. CohesiveFT. Elastic Server©. 2010. http://elasticserver.com/.

6. Cole, Adrian F., and Manik Surtani. jCloud. Multi-cloud Framework. 2010.

http://code.google.com/p/jclouds/.

7. DTO Solutions. Control Tier. 2010. http://controltier.org/wiki/Main_Page.

8. enStratus Networks LLC. The Dasein Cloud API. 2010. http://dasein-

cloud.sourceforge.net/.

9. Frost, Dan. "Using Capistrano." Linux Journal 177 (2009): 8.

10. Goldsack, Patrick, et al. "The SmartFrog configuration management

framework." ACM SIGOPS Operating Systems Review 43 (2009): 16-25.

11. Jacob, Adam. "Infrastructure in the Cloud Era." Proceedings at International

O'Reilly Conference Velocity. 2009.

12. Nurmi, Daniel, et al. "The Eucalyptus Open-source Cloud-computing System."

Proceedings of the 9th IEEE/ACM International Symposium on Cluster

Computing and the Grid. 2009.

13. Scalr, Inc. Self-Scaling Hosting Environment utilizing Amazon's EC2. 2010.

https://scalr.net/.

14. Turnbull, James. Pulling Strings with Puppet. FristPress, 2007.

