
ELSEVIER – FUTURE GENERATION COMPUTER SCIENCE 1

 Jose M. Alcaraz Calero* Juan Gutiérrez Aguado

University of the West of Scotland University of Valencia

 School of Engineering and Computing Departamento de Informatica

 High Street, Paisley Campus Avda. Universidad s/n

 Paisley, PA1 2BE, Scotland 46100 Burjassot, Valencia

 United Kingdom Spain

JoseMaria.AlcarazCalero@uws.ac.uk juan.gutierrez@uv.es

 *Corresponding Author

Abstract— The lack of control over the cloud resources is one of the main disadvantages associated to cloud computing. The design

of efficient architectures for monitoring such resources can help to overcome this problem. This contribution describes a complete set

of architectures for monitoring cloud computing infrastructures, and provides a taxonomy of them. The architectures are described in

detail, compared among them, and analysed in terms of performance, scalability, usage of resources, and security capabilities. The

architectures have been implemented in real world settings and empirically validated against a real cloud computing infrastructure

based on OpenStack. More than 1000 virtual machines (VMs) have been executed for more than 2 months in scenarios ranging

between 18 and 24 simultaneous VMs in order to achieve the empirical comparison provided in this contribution. The implementation

of all the monitoring architectures has been released to the community as MonPaaS, a public open source project for OpenStack. Also,

some recommendations about the best architecture in terms of performance and security have been covered in this contribution as

part of the analysis carried out.

Index Terms—Cloud Computing, Architecture Evaluation, Infrastructure Monitoring, Service Monitoring, Infrastructure-as-a-

Service, Monitoring-as-a-Service

1. INTRODUCTION

The Infrastructure-as-a-Service (IaaS) associated to cloud computing is changing the way in which businesses are facing the

acquisition of new hardware. Now, businesses can take the advantages of cloud computing in order to reduce significantly the

costs associated to up-front acquisition of hardware by means of the renting of a portion of the hardware requirements in a pay-

as-you-go model. This hybrid scenario in which the owned and rented resources are used to create an elastic infrastructure that is

constantly changing according to the business requirements entails several challenges that may be addressed to make cloud

computing really attractive for the markets.

One of the challenges associated to the usage of *aaS is the lack of architectures to allow an adaptive and secure monitoring of

the resources both for the provider of the infrastructure and the consumer of the resources. This should be analyzed carefully

because enabling the consumer to configure the monitoring of the resource can entail a security risk as she could incidentally

monitor the resources of other consumers or the physical infrastructure. Also, the provider should obtain from the rented

resources the information in a transparent way but should monitor management VMs or physical machines in a more exhaustive

way using a rich set of metrics. This lack of control may be addressed by means of monitoring services to collect the status of

the cloud computing infrastructure. These monitoring services enable both cloud infrastructure provider and cloud infrastructure

consumer to get a complete overview about the status of the cloud resources. The main problem when coming with these

monitoring services is twofold. On the one hand, the monitoring services currently available in the market have been specifically

designed to monitor physical resources and for this reason they do not fit well when monitoring virtual resources that have a

completely different life cycle, being the resources constantly created and destroyed. Notice that physical resources are not

created and destroyed but virtual resources are constantly being created and destroyed. This fact causes serious problems in

many of the current monitoring solutions due to the fact that they do not have been designed to “forget” resources. In

consequence, they assume a 1-by-1 relationship between IP and monitored node. However, the reality in cloud infrastructures is

that in a very short period of time the IP address being assigned to one VM is now being reused in another VM and even it can

be assigned to a different consumer. This change will not be identified in traditional monitoring architectures and in consequence

they toll will end up monitoring a complete different resource. Obviously, this is not acceptable for real deployments. So, the

monitoring software should deal with frequent changes in the topology and with the new life-cycle of the virtual infrastructures

where creation and destruction are part of the cycle. On the other hand, the number of monitoring services specifically designed

to fit in infrastructures of cloud computing is really scarce (almost inexistent if we focus on open source solution). For this

reason, it is really difficult to find comparisons between different architectures of monitoring services for cloud computing. In

fact, to the best of our knowledge, this is the first attempt of providing such comparison.

The main contribution of this paper is the description of a complete set of innovative and novel architectures of monitoring

services suitable for cloud computing infrastructures. All the architectures described have been designed, analysed, implemented,

and released to the community as open-source software. The architectures have also been empirically validated in a real cloud

Comparative Analysis of Architectures for Monitoring

Cloud Computing Infrastructures

mailto:JoseMaria.AlcarazCalero@uws.ac.uk
mailto:juan.gutierrez@uv.es

ELSEVIER – FUTURE GENERATION COMPUTER SCIENCE 2

computing infrastructure. A comprehensive analysis in terms of performance and security has been carried out comparing the

different architectures provided. A novel taxonomy and some recommendations of the best choice have been also provided. The

contribution pretend to provide to the scientific community a set of open source implementations of monitoring solutions and

also to help any academic or practitioner to determine what is the best monitoring alternative according to her particular

necessities. The monitoring tools have been validated over different versions of OpenStack including Folsom, Havana, Ice

House and Juno and with different networking modes including Nova-Network and Neutron.

This contribution has been organised as follows: Section 2 and Section 3 introduce the basic background on infrastructures of

cloud computing and in distributed monitoring services, respectively. After that, section 4 describes in detail the architectures of

monitoring services for cloud computing infrastructures. Then, section 5 describes the comparative analysis between all the

architectures providing as well a recommendation of the most suitable architecture for different scenarios. Section 6 describes the

prototypical implementation of the architectures. An empirical evaluation of different architectures is presented in section 7 in

order to analyse the performance of each of the architectures. Section 8 provides a complete state-of-the-art on monitoring

services for cloud computing and shows the mapping between the architectures provided in this contribution and the solutions

available in the market. Finally, section 9 provides some conclusions and outlines future works.

2. ARCHITECTURE OF A IAAS STACK

This section provides an introduction to the components available inside of a cloud computing infrastructure. Figure 1 shows an

overview of the different components available therein. It is important to remark that it is assumed a public cloud computing

scenario in which cloud consumers, i.e. the organizations using the cloud services, and the cloud provider, i.e. the organization

renting the cloud resources, are different organizations. This scenario entails more challenges than private clouds where both

belong to the same administrative domain.

Figure 1. Architectural Overview of a Cloud Computing Infrastructure

According to NIST Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool

of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned

and released with minimal management effort or service provider interaction [1]. There are some essential services required to

provide the IaaS to the cloud consumers. These services are summarized as follows: i) Web UI. The cloud consumers use the

Web UI to rent cloud resources using a Web browser; ii) API is used to interact programmatically with the cloud computing

infrastructure; iii) Authentication and Authorization is in charge of controlling the actions allowed for the cloud consumer inside

of the cloud provider; iv) Scheduler is in charge of deciding the physical machines (PM) in which the rented resources will be

allocated; v) VM Images manages the images of different operating system available to the cloud consumer; These images are

lately used in the virtual machines (VM) rented by the cloud consumer; vi) Storage is in charge of managing the storage devices

rented to the cloud consumer; vii) Billing controls the usage and resources billing of the resources; viii) Networking is in charge

ELSEVIER – FUTURE GENERATION COMPUTER SCIENCE 3

of controlling the configuration of networking associated to the VMs. Currently, this Networking module can provide basic

connectivity between VMs or can also provide a complete Software-Defined Network solution enabling cloud consumer to

create their own network infrastructures; ix) Certificate service controls the cryptographic information used into the VMs.

The previous services compose the Cloud Controller. They can be seen in the upper part of Figure 1. These services are

deployed in only one physical machine or even in only one VM, or in several physical machines or VMs depending on size and

purpose of the infrastructure deployed. Sometimes these deployment decisions are determined by the implementation of the

cloud computing stack utilized. So, OpenStack
1
, a well-known open source IaaS stack, foster the usage of physical machines for

such deployment whereas Apache CloudStack
2
 foster the usage of VM for such purpose. All the services are communicated by

means of a communication middleware. Usually, a message bus is used as communication middleware due to its innate

advantages.

There is also a set of computers which compose the computing machines of the infrastructure. These machines are the

computational resources rented to the cloud consumers. These machines have usually a virtualization layer installed to enable the

management of VMs, virtual partitions, etc. Generally, these machines have also installed a Computing service used to connect

the machines to the communication middleware. This connection allows the reception of messages from the Cloud Controller to

perform actions in the virtualization layer. These machines can be seen in the centre of Figure 1. When a cloud consumer creates

a VM, this VM is isolated from the rest of VMs belonging to other consumers for security purposes. The cloud consumer can

decide if her VMs are publically visible in Internet or only internally accessible. These VMs are composing the virtual

infrastructures created by each cloud consumer. They can be seen in the lower part of Figure 1.

The validation of the different monitoring architectures described in this paper has been successfully done using OpenStack as

software for managing the cloud computing infrastructure. Concretely, the architectures described in this paper have been

validated in OpenStack Folsom, Havana, and IceHouse using two different networking architectures: Nova Network that only

provide basic networking connectivity and the new OpenStack Neutron
3
 providing a complete networking solution for both cloud

consumer and provider. In all the cases, all the architecture described in this paper has been correctly validated. Technical details

will be provided lately in section 6.

3. ARCHITECTURE OF A DISTRIBUTED MONITORING SYSTEM

Figure 2 shows an overview of the components available in a monitoring service. The monitoring core is in charge of performing

and controlling all the monitoring tasks. This component uses configuration files to obtain the resources and services to be

monitored.

Figure 2. Architectural Overview of a Monitoring Service

1 OpenStack is available for download at http://www.openstack.org/

2 Apache CloudStack is available for download at http://cloudstack. apache.org/
3 Information about OpenStack neutron is available at https://wiki.openstack.org/wiki/Neutron

http://www.openstack.org/
https://wiki.openstack.org/wiki/Neutron

ELSEVIER – FUTURE GENERATION COMPUTER SCIENCE 4

The monitoring logic implemented inside the monitoring core uses such configuration files to perform the monitoring of the

different metrics. These metrics are gathered using different extensions (see the right part of Figure 2). This design is flexible as

it enables to extend further monitoring approaches in the future. Currently, the following ones are usually provided in any of the

enterprise-level monitoring software available in the market:

i) Local Monitoring. The monitoring logic uses plugins executed locally to extract metrics directly from such local

machine. This local machine is where the monitoring core is running.

ii) Agent-less Remote Monitoring. The monitoring logic uses plugins to extract metrics from remote resources in a

transparent approach, i.e. without the necessity of using any software installed in the remote resource. Port

scanning, ICMP request and TCP connections are some example of this type of monitoring.

iii) Agent-based Active Remote Monitoring. The monitoring logic uses plugins to interrogate a software agent running

in the remote resources. When the remote software agent receives requests, it executes the plugins to extract locally

the metrics which are lately sent back to the monitoring core.

iv) Agent-based Passive Remote Monitoring, The monitoring logic uses a plugin which open a port. Then, the software

agent running in the remote resource sends information to such port when necessary, for example, periodically or

using an event-based notification approach.

The monitoring core is also composed by other functionalities. The Event Logic is in charge of registering event handlers which

perform actions when such events occur in the system. These actions are usually the execution of commands. The Notification

Logic is in charge of informing the administrators about events. When the monitoring service is running, the log files and status

files are being continuously updated with the metrics gathered. Then, the monitoring graphical interface shows graphically such

information to the user. This interface only enables the user to see the information. However, if the user wants to change the

configuration files, she must use the monitoring management interface for such purpose defining what the resources to be

monitored are, what the metrics to be monitored over such resources, are and how these metrics are being collected. Finally, the

monitoring service may scale in a distributed monitoring platform. The performance logic implemented in the monitoring core is

in charge of such purpose. This performance logic enables an optional balancing of the workload of monitoring tasks between

different machines. This feature enables to scale the monitoring service to large deployments. The performance logic divides the

tasks along all the registered monitoring instances (see the middle part of Figure 2). It enables to create a hierarchy of monitoring

instances to perform a smart load balancing of the tasks.

4. ARCHITECTURES FOR MONITORING INFRASTRUCTURES IN CLOUD COMPUTING

This section describes all the architectures of monitoring services for cloud computing infrastructures. This section has been

divided in five subsections to make the reading easier.

4.1 Monitoring Physical Machines in the internal network

It is highly probable that the cloud provider wants to monitor his physical machines to get an overview of the status of his

infrastructure. The monitoring of the physical machines requires the inclusion of the monitoring service inside of the internal

network (usually referred to as management network as well) where the infrastructure of cloud computing is running due to the

fact that it is required a direct connectivity with the physical machines. Generally, the physical machines are neither visible in

Internet nor by the virtualization layer. This isolation of the physical machines is done for security concerns, minimizing external

and internal security threats. These architectures are referred henceforth as Internal Monitoring Architecture (IMA) due to its

internal placement. Figure 3 shows an overview of a Traditional Internal Monitoring Architecture, the first kind of these

architectures. As can be seen in Figure 3, both agent-less and agent-based monitoring is allowed due to the fact that the cloud

provider has the complete control over all the machines involved. IMA does not entail important challenges with respect to

existent monitoring solutions in the market. In fact, existing enterprise-class open-source monitoring solutions like Nagios
4
 and

Ganglia
5
 can be used for this purpose. Both monitoring and management graphical interfaces may never be accessible publically

in this architecture. If anyone gains access to such interfaces, she can act as administrator which is simply unacceptable in a real

deployment. Only the cloud provider may have access to such interfaces due to the intrinsic risks associated.

4 Nagios is available at http://www.nagios.org/

5 Ganglia is available at http://ganglia.sourceforge.net/

http://www.nagios.org/
http://ganglia.sourceforge.net/

ELSEVIER – FUTURE GENERATION COMPUTER SCIENCE 5

Figure 3. Architecture Overview of the Internal Monitoring Architecture (IMA)

It would be arguable a scenario in which the cloud consumers could access to a limited set of metrics about the physical

machines in which their VMs are running. This information may be welcome for some consumers. They may use such metrics to

perform smart decisions. However, the same information may be detrimental for other consumers. They may use such

information to identify collocated VMs inside of the same physical machine, heterogeneous hardware, bandwidth consumption,

etc. This information may cause that some cloud consumers may not be happy with the results found in the analysis of such

metrics, even taking the decision to shift to a different infrastructure provider. This is probably the main reason for which none

of the current public vendors provide such information to the consumers. So, we have decided to discard such option not from

the technical side but for the business side. So, Traditional IMA is the only architecture described in this paper suitable for the

cloud provider but “not suitable” for the cloud consumer.

4.2 Internal Approaches for Monitoring Physical and Virtual Machines

It is high probable that the cloud provider wants to monitor both physical and VM. In case the cloud provider wants to monitor

the VMs belonging to all the cloud consumers, there is a clear requirement to be fulfilled. The consumer’s VMs have to be

monitored using a non-intrusive approach, i.e. the monitoring approach has to be hidden from the point of view of the cloud

consumer. This requirement makes the installation of a monitoring agent inside of the VMs not a real option in production

scenarios. s. The monitoring of VMs may be implemented extending the architecture previously described in section 4.1. This

extension consists in the usage of a new plugin, named Hypervisor Plugin, for local monitoring installed in the physical

machines. This plugin extracts the metrics from the hypervisor in the virtualization layer, and is invoked by the software agents

installed in the physical machines when required. Currently, only a small and closed set of metrics can be gathered from

hypervisors. Concretely, bandwidth I/O, file I/O, CPU I/O and Memory I/O are the provided metrics in the vast majority of

hypervisors. This plugin gathers such metrics using transparent monitoring from the point of view of the cloud consumer. This

architecture is henceforth referenced as Extended Internal Monitoring Architecture (Extended IMA), and is depicted in Figure 4

(see the Hypervisor Plugin).

Figure 4. Architectural Overview of the Extended Internal Monitoring Service (EIMA)

Although Extended IMA is a good architecture, it does not cover the case in which the cloud provider wants a wider range of

metrics. So, a new architecture can be provided in which the Hypervisor Plugin is also complemented with other metrics

gathered by means of agent-less remote monitoring of the VMs. These metrics enable the cloud provider to get more information

ELSEVIER – FUTURE GENERATION COMPUTER SCIENCE 6

like the status of any TCP/UDP port, ICMP responsiveness, etc. This is a transparent and non-intrusive monitoring approach, but

requires a direct communication with all the VMs. This communication is really powerful but at same time is very challenging.

On the one hand, the communication from physical to virtual machines can be enabled in infrastructures of cloud computing but

not the other way back usually blocked for security purposes. This fact needs to be carefully addressed, for example, enabling

only active monitoring approaches where the connection is originated from the physical machine. On the other hand, even with

the incredible number of traditional monitoring solutions providing agent-less monitoring capabilities (IBM Tivoli Network

Manager, OpenNMS, LiveAction, OpsView, OpenKBM, Pandora FMS to name a few), none of them fit in infrastructures of

cloud computing. The main reason is the incredible difference in the life cycle of the VMs (now being monitored in this

architecture) with respect to the physical machines. The physical infrastructures rarely change their topology, mainly due to

hardware failures or replacements. In fact, the “destruction” of physical resources is conceptually impossible. Moreover,

physical infrastructure usually keeps constant the number of services provided. These features have been the foundations during

the development of all the services around to the traditional monitoring ecosystem: monitoring agents, hardware auto-discovery

protocols, service auto-discovery protocols, etc. However, virtual infrastructures expose a completely different set of

requirements. Firstly, services have to be monitored in a transparent way. Secondly, VMs can be destroyed causing frequent

changes in the topology and current discovery protocols do not react properly under this destruction of resources. Thirdly, IP

addresses are reused constantly and it causes incoherent mixes of monitoring information due to collisions of IP addresses. So,

traditional monitoring approaches do not really fit well in the monitoring of cloud computing infrastructures.

This problem can be addressed by means of the creation of a new monitoring module. This new module is connected to the

communication middleware of the cloud computing infrastructure in order to monitor topological changes in the virtual

infrastructure. These changes are notified to the monitoring service as soon as they are detected enabling a self-adaptive

monitoring service. So, this new module perform automatically the setup for an agent-less monitoring of new VMs and can

remove automatically resources from the monitoring service when they are destroyed. The architecture including this new

module is depicted in Figure 5 (see the “Monitoring Module”) and will be henceforth referred as Extended and Adaptive Internal

Monitoring Architecture (Extended and Adaptive IMA).

Figure 5. Architecture Overview of the Extended Adaptive Internal Monitoring Service

There are other approaches to achieve the monitoring of VMs. They are explained in the next subsection.

4.3 External Approaches for Monitoring Virtual Machines

An External Monitoring Architecture (EMA) is defined as an architecture in which the monitoring services are located out of the

internal network. This definition includes monitoring services deployed either inside of VMs or in an external location outside of

the cloud computing infrastructure. However, the deployment of monitoring services in an external location is not a suitable

option due to the fact that only publically available VMs can be monitored and not internal VMs where no public IPs are

available. This fact makes the cloud computing infrastructure the only suitable location to deploy an external monitoring

architecture. In this case the monitoring services will be deployed in the so called VM data network. The usage of VMs for

monitoring purposes enables the setup of a distributed monitoring architecture which scales following two different approaches:

static and dynamic. The static approach scales the number of VMs manually by means of the administrator policies whereas the

dynamic approach scales the number of VMs automatically according to a given criteria providing an elastic monitoring

architecture. It is worthy to empathise that VMs do not have access to the physical machines of the cloud computing

infrastructure. For this reason, this kind of architectures is suitable for the cloud consumer. They are also suitable for the cloud

provider, however, only in the case that he does not require the monitoring of physical machines. In fact, notice how a static

ELSEVIER – FUTURE GENERATION COMPUTER SCIENCE 7

External Monitoring Architecture for providing monitoring services to the cloud provider is architecturally similar to an

Extended and Adaptive IMA where the monitoring of physical machines has been disabled. The main difference is the shifting of

the deployment of the monitoring services from physical machines to VMs which provide less performance than physical

machines and there is no reason for isolating the monitoring services inside of a VM so far than security concern. So, it has been

decided to discard a static EMA for the cloud provider in favour of EAIMA. Moreover, static EMAs for providing monitoring

services to cloud consumers may be a potential bottleneck due to the fact that it does not scales according to the size of the

infrastructure. This lack makes static EMAs a not suitable architecture for large deployments. So, all the static approaches have

been discarded and it has been considered only the dynamic approaches. In dynamic EMA, it is logical to consider the elasticity

factor of the infrastructure as one monitoring VM per each cloud consumer that has at least one VM running in their virtual

infrastructure. This approach scales reasonably the number of VMs used for monitoring purposes according to the size of the

infrastructure. There are other options for defining the elasticity factor like the number of total VMs running in the infrastructure.

However, the usage of a VM per tenant network has benefits due to the fact that these monitoring VMs can be used to provide

different services to the cloud consumer (others rather than monitoring). In fact, extra VMs can be optionally instantiated to

balance the monitoring workload of such cloud consumer according to the number of VMs running, if necessary. This is

optionality used to cover scenarios where there are only a few consumers with a lot of VMs running by each consumer. Another

benefit of this elasticity factor is that it enables the implementation of multi-tenancy support in the monitoring services by means

of a multi-instantiation of monitoring services, one VM per each consumer.

The main disadvantage of the External Monitoring Architectures with respect to Internal Monitoring Architectures is the usage

of VMs which entail a significant usage of virtual resources for monitoring purposes rather than being rented to the cloud

customers. As counterpart, the usage of VMs enables a real distributed and elastic architecture suitable for high scalability.

Moreover, EMAs are also more extensible in terms of the services which may be provided due to the fact that the VMs can be

used not only for monitoring services but also for a myriad of services. EMAs are composed mainly of two different components.

A self-contained VM image with all the monitoring services preloaded and ready to be instantiated, and a monitoring module

connected internally to the message queue. This monitoring module is analogous to the introduced in EAIMA but now it is in

charge of starting new monitoring VMs, and of notifying to the monitoring VMs about topological changes in the infrastructure.

These VMs are referenced as Monitoring VMs (MVMs). Figure 6 depicts an overview of the first external architecture proposed,

the Sparse External Monitoring Architecture (SEMA). The term Sparse is used to refer to the fact that each of the MVMs is

instantiated in the virtual domain of the cloud consumer, i.e. the monitoring virtual machine belongs to the costumer. This

decision implies that SEMA is only suitable for providing services to the cloud consumer and not to the cloud provider.

Otherwise, the cloud consumer could see in her own virtual domain VMs (used by the cloud provider for monitoring purposes)

that are unknown for her. This Sparse EMA Architecture makes the cloud consumer responsible of the management of the life

cycle of such MVM. She can stop, start and even destroy either intentionally or by accident the MVM with its risk associated..

This access may be a potential source of security threats. It also requires that the monitoring module must impersonate to each of

the cloud consumers to create the MVM on their behalf with the risks associated to the execution of this privileged action. For all

these security issues, Sparse EMA is only welcome when it is explicitly wanted to provide the control of the life cycle over the

MVM machines to the cloud consumer.

Figure 6. Architecture Overview of the External Monitoring Architecture

ELSEVIER – FUTURE GENERATION COMPUTER SCIENCE 8

To overcome the security issues associated to Sparse EMA the Concentrated External Monitoring Architecture (Concentrated

EMA) is proposed. This architecture imposes the creation of a special cloud consumer called MonPaaS that is the only owner of

all the MVMs. So, the monitoring module only needs to impersonate MonPaaS and also only needs accesses to the virtual

domain of MonPaaS. In fact, only the monitoring module (who is directly managed by the cloud provider) can control the life

cycle of the MVMs and thus such MVMs can be used for providing other services in the infrastructure. In Concentrated EMA, all

the MVMs have a public IP which is used by the cloud consumers to access her monitoring and management interfaces

Figure 7. Architecture Overview of the Concentrated External Monitoring Architecture

From the point of view of the performance, there are not significant differences between these two architectures, Concentrated

EMA and Sparse EMA. Thus, Concentrated EMA may be a best alternative to Sparse EMA in almost all the scenarios. The only

exception are the scenarios in which the management of the MVM life cycle is explicitly given to the cloud consumers.

4.4 Monitoring VMs from the point of view of the Cloud Consumer

This subsection explain the modifications required over the architectures described in the previous subsection in order to make

them suitable for providing monitoring services to cloud consumer.

Both Extended IMA and Extended and Adaptive IMA are suitable for providing the monitoring services to the cloud consumer

over her VMs. The only extra requirement over these architectures is that the monitoring service must provide multi-tenant

support to enable all cloud consumers to access to their own overview of the infrastructure. In fact, Extended and Adaptive IMA

may be optionally extended with the usage of a software agent installed in the cloud consumer’s VM in order to provide more

detailed monitoring information to the consumer. Moreover, it is important to remark the fact that both architectures may have

disabled the monitoring of the physical machines. Sparse EMA and Concentrated EMA are directly suitable for providing the

monitoring services to the cloud consumer over her VMs

The main architectural decision of the architectures oriented to the cloud consumer is not related to the monitoring graphical

interface which may be always exposed to the consumer but related to the management graphical interface. So, regarding the

management graphical interface, the following scenarios can occur:

i) No management Interface is exposed to the Cloud Consumer. There are a closed set of (predefined) metrics which

are transparently gathered by the monitoring service from the consumers’ VMs. These metrics are shown in the

monitoring graphical interface. This option is the implemented by a number of public could providers like Amazon

EC2 CloudWatch or RackSpaces, among others. Also, this option is provided by OpenStack Ceilometer.

ii) Basic Management Interface is exposed to the Cloud Consumer. This interface enables the cloud consumer to

customize the metrics and services to be monitored inside of her VMs. This interface can be also used to customize

the metrics related with the use of agent-based monitoring approaches which are only available if the agent is

optionally installed in the cloud consumer’s VMs.

iii) Complete Management Interface is exposed to the Cloud Consumer. This interface extends the basic management

interface to enable the definition and customization of new physical and virtual resources and the services to be

monitored, even if they are external resources to the cloud computing infrastructure. This interface can be seen as a

smart Monitoring Platform -as-a-Service for the cloud consumer.

ELSEVIER – FUTURE GENERATION COMPUTER SCIENCE 9

From the previous scenarios, it can be shown that the key architectural decision is to expose or not to expose a management

interface to the cloud consumer. This decision will be lately used to identify different monitoring scenarios.

4.5 Taxonomy of Monitoring Architectures for Cloud Computing

This section describes the taxonomy of the monitoring architectures previously introduced. In the top level of the hierarchy,

shown in Figure 8, it can be seen the Internal and External Architectures grouping the five architectures described in the

previous sections. Note that each architecture offers different choices according to the user using such them, being CP (Cloud

Provider), CC (Cloud Consumer) and CP+CC (both of them). For each of these alternatives, it may be considered the possibility

to monitor either physical machines (PM), virtual machines (VM) or both of them (VM+PM). As a result of these alternatives,

12 architectures may be suitable combinations. They have been numbered just to enable other researchers and practitioners to

easily refer them trying to create a common vocabulary when referring and comparing monitoring infrastructures. Each

architecture can be deployed with or without the usage of a monitoring agent. In fact, for the case in which the architecture is

being used by both CP+CC three different combinations can appear for the usage of agents: (Agent/Agent), (Agent/No Agent),

(No Agent/No Agent). The first term is referred to the usage of agents in the cloud provider whereas the second one is referred to

cloud consumer.

Moreover, only for the case of external architectures, for each of the above combinations it can be chosen as well different

combinations depending if the management interface is exposed to the cloud consumer or not. These combinations are

represented with discontinuous lines in Figure 8. In total, there are 53 different combinations.

Monitoring Architectures for Cloud Computing Infrastructures

Internal Monitoring

Architectures
External Monitoring Architectures

Traditional IMA Extended IMA

CC CP+CCCP

PM VM

Extendded and Adaptive AIMA

CP CC CP+CC

VM VMPM+VM VM/VM VM+PM/VM

Concentrated EMA

CC

VM

CP+CC

VM/VM

Sparse EMA

CC

VM

CP = Cloud Provider

CC = Cloud Consumer

VM = Virtual Machines

PM = Physical Machines

(1) (2) (4) (5) (6) (7) (9) (10) (11) (12)

PM/VM

(8)

PM/VM

(3)

Agent-Based Agent-Less Agent-Based/Agent-Based Agent-Based/Agent-Less Agent-Less/Agent-Less

Do Not Provide

Monitoring Interface to

CC

Do Provide

Monitoring Interface

to CC

Figure 8. Proposed Taxonomy of the Monitoring Architectures for Cloud Computing

5. ANALYSIS OF THE DIFFERENT ARCHITECTURES FOR MONITORING SERVICES

This section describes a set of realistic scenarios that can happen when a monitoring service needs to be deployed. These

scenarios are analysed against all the monitoring architectures presented in order to provide the suitable alternatives for each

scenario. The following list of monitoring scenarios are considered: i) Cloud Provider wants to monitor PM - PM(p); ii) Cloud

Provider wants to monitor VMs – VM(p); iii) Cloud Consumer want to see the monitoring information of her VMs – VM(c);iv)

Cloud Consumer want to customize and configure the monitoring information gathered from her VMs–Mgmt(c).

All the possible combinations of these 4 assumptions represent the scenarios that are shown in the left side of Table 1. All the

monitoring architectures described in this paper are also shown in the central side of Table 1. Each monitoring architecture

encloses in parenthesis the final user of this architecture, i.e. p=cloud provider, c=cloud consumer. It is important to remark that

despite of the users indicated in parenthesis, if the scenario does not consider such users, they will be ignored for obvious

reasons. For example, in scenarios 3 and 4, Spare EMA(c+p) is Spare EMA(c) because such scenarios do not require monitoring

services by the cloud provider. Finally, the right side of Table 1 shows suitable combinations of hybrid architectures, where a

monitoring architecture is used for the cloud provider whereas another one is used for the cloud consumer. These combinations

can be seen as a security improvement due to the isolation done between different users. Only the combinations that make sense

have been included.

Table 1 shows whether the architecture is suitable or not for the different scenarios. If the architecture is not suitable, it has

associated a number which represents the reason for which the architecture has been discarded. Table 2 shows the list of possible

reasons. Analysing Table 1 from up to down, 5 architectures are unveiled as the best candidates for a significant number of

scenarios:

ELSEVIER – FUTURE GENERATION COMPUTER SCIENCE 10

i) Extended and Adaptive IMA for both cloud consumer and provider.

ii) Concentrated EMA for both consumer and provider.

iii) Extended and Adaptive IMA for cloud provider and Concentrated EMA for cloud consumer.

iv) Traditional IMA for cloud provider and Concentrated EMA for both consumer and provider.

v) Traditional IMA is the best choice when the cloud provider only wants to monitoring physical machines.

There are other architectures that even being suitable for some scenarios have been discarded in detriment of the 5 previous

options. The reasons that have motivated such discards are the following ones:

 Extended IMA(c+p) only makes sense in scenarios where only a small set of predefined metrics, gathered from the

hypervisor, are required. Besides, Extended and Adaptive IMA is an extension of Extended IMA and can be configured

to work only in “Extended IMA” mode with similar security and performance capabilities.

 Spare EMA(c+p) is only suitable under the particular circumstance in which the cloud consumer has the capability to

stop and start her own MVM. In any other case, Condensed EMA(c+p) is a similar architecture in terms performance

and capabilities whereas the security is really improved.

 Traditional IMA(p) + Sparse EMA(c+p) is only suitable under the particular circumstance in which the cloud consumer

has the capability to stop and start her own MVM. Traditional IMA(p) + Condensed EMA(c+p) is the preferred choice

which is a similar architecture with better security capabilities.

If the reader discards all architectures non suitable for any of the scenarios analysed and also discards the list previously

indicated, the result set is composed by the 5 architectures indicated previously. They have been empathised in bold in Table 1.

Table 1 provides also ID of the monitoring architecture available in the taxonomy (see Figure 8) for the architecture indicated as

suitable in order to make easier to match scenario and monitoring architecture.

ID Scenario Monitoring Architectures Hybrid Architectures

PM

(p)

VM

(p)

VM

(c)

Mgmt

(c)

T
ra

d
it

io
n

a
l

IM
A

 (
c+

p
)

E
x
te

n
d

e
d

 I
M

A
(c

+
p

)

E
x

te
n

d
e
d

 a
n

d
 A

d
a

p
ti

v
e

 I
M

A
(c

+
p

)

S
p

a
rs

e
 E

M
A

 (
c+

p
)

C
o
n

ce
n

tr
a

te
d

 E
M

A
 (

c+
p

)

T
ra

d
it

io
n

a
l

IM
A

(p
)

+

S
p

a
rs

e
 E

M
A

(c
+

p
)

T
ra

d
it

io
n

a
l

IM
A

 (
p

)

+

C
o
n

ce
n

tr
a

te
d

 E
M

A
 (

c+
p

)

E
x
te

n
d

e
d

 I
M

A
 (

p
)

+

S
p

a
rs

e
 E

M
A

(c
)

E
x
te

n
d

e
d

 a
n

d
 A

d
a

p
ti

v
e
 I

M
A

(p
)

+

S
p

a
rs

e
 E

M
A

(c
)

E
x
te

n
d

e
d

 I
M

A
 (

p
)

+

C
o
n

ce
n

tr
a

te
d

 E
M

A
 (

c)

E
x

te
n

d
e
d

 a
n

d
 A

d
a

p
ti

v
e

 I
M

A
 (

p
)

+

C
o
n

ce
n

tr
a

te
d

 E
M

A
 (

c)

1 N N N N ✘1 ✘1 ✘1 ✘1 ✘1 ✘1 ✘1 ✘1 ✘1 ✘1 ✘1

2 N N N Y ✘2 ✘2 ✘2 ✘2 ✘2 ✘2 ✘2 ✘2 ✘2 ✘2 ✘2

3 N N Y N ✘4 ✔

(2)

✔

(6)

✔

(12)

✔

(10)

✘4 ✘4 ✘3 ✘3 ✘3 ✘3

4 N N Y Y ✘4 ✘6 ✔

(6)

✔

(12)

✔

(10)

✘4 ✘4 ✘3 ✘3 ✘3 ✘3

5 N Y N N ✘4 ✘7 ✔

(4)

✘9 ✘8 ✘4 ✘4 ✘3 ✘3 ✘3 ✘3

6 N Y N Y ✘2 ✘2 ✘2 ✘2 ✘2 ✘2 ✘2 ✘2 ✘2 ✘2 ✘2

7 N Y Y N ✘4 ✘7 ✔

(7)

✘9 ✔

(11)

✘4 ✘4 ✘7 ✘11 ✘7 ✔

(4+10)

8 N Y Y Y ✘4 ✘6 ✔

(7)

✘9 ✔

(11)

✘4 ✘4 ✘7 ✘11 ✘7 ✔

(4+10)

9 Y N N N ✔

(1)

✘8 ✘8 ✘10 ✘10 ✘8 ✘8 ✘3 ✘3 ✘3 ✘3

10 Y N N Y ✘2 ✘2 ✘2 ✘2 ✘2 ✘2 ✘2 ✘2 ✘2 ✘2 ✘2

11 Y N Y N ✘5 ✔

(3)

✔

(8)

✘10 ✘10 ✔

(1+12)

✔

(1+10)

✘8 ✘8 ✘8 ✘8

12 Y N Y Y ✘5 ✘6 ✔

(8)

✘10 ✘10 ✔

(1+12)

✔

(1+10)

✘8 ✘8 ✘8 ✘8

13 Y Y N N ✘5 ✘7 ✔

(5)

✘10 ✘10 ✘9 ✘8 ✘3 ✘3 ✘3 ✘3

14 Y Y N Y ✘2 ✘2 ✘2 ✘2 ✘2 ✘2 ✘2 ✘2 ✘2 ✘2 ✘2

15 Y Y Y N ✘5 ✘7 ✔

(9)

✘10 ✘10 ✘9 ✔

(1+11)

✘7 ✘11 ✘7 ✔

(5+10)

16 Y Y Y Y ✘5 ✘6 ✔ ✘10 ✘10 ✘9 ✔ ✘7 ✘11 ✘7 ✔

ELSEVIER – FUTURE GENERATION COMPUTER SCIENCE 11

(9) (1+11) (5+10)

Table 1. Analysis of the suitability of the architecture proposed for different monitoring scenario

Table 2. List of possible reasons for which architectures is discarded as suitable for a given scenario

Table 2 indicate the reasons for which the monitoring architectures have been discarded as suitable for the scenario analysed. We

have classified them into two different kinds of reasons: weak reasons and strong reasons. On the one hand, a strong reason

indicates that the architecture is directly not suitable under any circumstance for a given scenario. On the other hand, a weak

reason indicates that the architecture may be suitable under certain circumstances but it has been discarded due to optimization

purposes in terms of security, performance, capabilities or overhead.

Let us to analyse the 5 best monitoring architectures in detail. To do so, notice that these 5 monitoring architectures are

composed only by 3 monitoring architectures since the other 2 ones are hybrid architectures composed by combinations of these

3 ones.

 Traditional IMA(p) is the simplest architecture and thus the most efficient one when the cloud provide only need to

monitor physical machines. This is a traditional monitoring architecture and it will be only suitable when the cloud

provider does not need to monitor VMs.

 Extended and Adaptive IMA(c+p) reduces significantly to the minimum the resources used for monitoring purposes

which is probably its main added value. This reduction is achieved by the real multi-tenancy support of the monitoring

service together with the fact that it is deployed in PMs and thus, it has to follow a static approach for elasticity. This

makes this architecture less suitable for large deployments. Probably, Extended and Adaptive IMA(c+p) is the less

secure option. Any security threat in the monitoring software may result in an escalation of privileges enabling the

attacker to see the complete status of the infrastructure, i.e. the information of the cloud provider.

 Concentrated EMA(c+p) imposed an important overhead in the usage of VMs for monitoring purposes. However,

Concentrated EMA(c+p) provides a complete isolation of the monitoring services between different cloud consumers.

So, it may be a better option than Extended and Adaptive IMA(c+p) from the point of view of the security. Moreover,

Concentrated EMA(c+p) provides a really good scalability due to the automatic elasticity of the infrastructure

according to the number of tenants. The distribution of the workload among all the MVMs makes Concentrated

EMA(c+p) good in terms of performance. Despite of this security advantages of Concentrated EMA(c+p) with respect

to Extended and Adaptive IMA(c+p), it requires that both cloud provider and cloud consumer use the same monitoring

service. This fact can be another source of security threats. So, in scenarios in which strong isolation between provider

and consumer is required, it may be worthy to use hybrid architectures even despite of theconsequent overhead.

 Extended and Adaptive IMA(p) can be used for the cloud provider whereas Concentrated EMA(c) can be used for the

consumers. This combination leads to a high scalable and very secure architecture. The usage of MVMs is efficiently

used to provide a good performance.

 Finally, the combination Traditional IMA(p)+Concentrated EMA(c+p) is used to enable the cloud provider to monitor

ID Reason ID Reason

1 No need for monitoring services. Neither the cloud

consumer nor the cloud provider needs monitoring

services. (strong reason)

7 The architecture has been discarded due to the lack in the

customization of the metrics gathered for the cloud provider. He

requires a complete control over the resources. There is another

architecture which provides this functionality under similar

security and performance capabilities. (weak reason)

2 A scenario in which the cloud consumer can access to the

management interface but not to the monitoring

interface does not make sense. It is not realistic. (strong

reason)

8 The architecture has been discarded due to the fact that there is

another architecture which provide the required capabilities with a

minimal overhead (weak reason)

3 Hybrid architectures only make sense when both

consumer and provider use monitoring services

(strong reason)

9 SEMA implies MVM managed by the cloud consumer and this

makes the architecture not suitable when the cloud provider uses

the MVM for monitoring purposes. (strong reason)

4 IMA implies the monitoring of physical interfaces

otherwise it makes no sense. (strong reason)

10 External Monitoring Architectures cannot monitor physical

machines. (strong reason)

5 The architecture does not provide the required

capabilities. (strong reason)

11 There is other architecture with similar capabilities and

performance and with better security features. (weak reason)

6 The public exposition of the management interface to the

cloud consumer requires the customization of the metrics

to be gathered and this feature is not provided by this

architecture. (strong reason)

ELSEVIER – FUTURE GENERATION COMPUTER SCIENCE 12

PMs using a separated monitoring service.

A summary of the previous relational is shown in Table 3. Note that security, scalability and usage of resources may be inferred

from the analysis of the monitoring architecture; however performance requires an empirical evaluation. Thus, all the

information shown in the following tables take into account the empirical validation of the performance of the architectures

lately described in section 7.
A

rc
h

it
e
ct

u
re

P
e
rf

o
rm

a
n

ce

U
sa

g
e
 o

f

R
e
so

u
rc

e
s

S
e
cu

ri
ty

S
ca

la
b
il

it
y

Extended and Adaptive IMA(c+p) Very High Low Low Medium

Concentrated EMA(c+p) High High Medium Very High

Traditional IMA(p)+ Concentrated EMA(c+p) High Very High Medium Very High

Extended and Adaptive IMA(p)+Concentrated EMA(c) High Very High Very High Very High

Traditional IMA(p) Very High Very Low Low Medium

Table 3. Summary of the features exposed by the different architecture analysed

Joining the information shown in Table 1 with the information shown in Table 3, we would like to show Table 4 with our

recommendation of the best architecture for monitoring services for each of the scenarios identified. The recommendation has

been done according to two different criteria: security and performance. The aim is to provide to the academics and practitioners

a suitable architecture to be deployed according to their particular scenario.

 Table 4. Recommended architectures

6. IMPLEMENTATION

Almost all the monitoring architectures described in this contribution have been design, implemented and tested in a real cloud

computing infrastructure. The implementation has been released to the community as an open-source project under Apache 2.0

license called MonPaaS
6
. MonPaaS has been designed to be plugged to RabbitMQ, the message queue of OpenStack. OpenStack

is a well-known open source IaaS stack which follows exactly the architecture depicted in Figure 1. We have validated MonPaaS

and thus executed all the monitoring architecture analysed using three different versions and configurations of OpenStack in

order to validate the suitable of the proposed software. In all the cases all the monitoring architecture were working perfectly:

 OpenStack Folsom 2012 2.4-stable with single-host networking mode. Only nova components are used in this

6 MonPaaS is available at http://sourceforge.net/projects/monpaas/

ID Scenario Maximizing Performance while Minimizing the usage of
Resources

Maximizing security and isolation

 P
M

(p
)

V
M

(p
)

V
M

(c
)

M
g
m

t(
c)

1 N N N N N/A N/A

2 N N N Y N/A N/A

3 N N Y N Extended and Adaptive IMA(c) Concentrated EMA(c)

4 N N Y Y Extended and Adaptive IMA (c) Concentrated EMA(c)

5 N Y N N Extended and Adaptive IMA (p) Extended and Adaptive IMA (p)

6 N Y N Y N/A N/A

7 N Y Y N Extended and Adaptive IMA (c+p) Extended and Adaptive IMA (p) + Concentrated EMA(c)

8 N Y Y Y Extended and Adaptive IMA (c+p) Extended and Adaptive IMA (p) + Concentrated EMA(c)

9 Y N N N Traditional IMA(p) Traditional IMA(p)

10 Y N N Y N/A N/A

11 Y N Y N Extended and Adaptive IMA (c+p) Traditional IMA (p) + Concentrated EMA(c)

12 Y N Y Y Extended and Adaptive IMA (c+p) Traditional IMA (p) + Concentrated EMA(c)

13 Y Y N N Extended and Adaptive IMA (p) Extended and Adaptive IMA (p)

14 Y Y N Y N/A N/A

15 Y Y Y N Extended and Adaptive IMA (c+p) Extended and Adaptive IMA (p) + Concentrated EMA(c)

16 Y Y Y Y Extended and Adaptive IMA (c+p) Extended and Adaptive IMA (p) + Concentrated EMA(c)

http://sourceforge.net/projects/monpaas/

ELSEVIER – FUTURE GENERATION COMPUTER SCIENCE 13

experiment. So, we used Nova-Network flat mode for this installation. Notice that flat mode enables a direct

communication from physical machines and VMs (but not vice versa) and thus all the IMA architectures can work

perfectly with this networking mode. In this scenario all IMA architecture is installed in the Controller Node.

 OpenStack Havana 2013 with single-host networking mode. Only nova components are used in this experiment. So, we

used Nova-Network flat mode for this installation. In this scenario all IMA architecture is installed in the Controller

Node.

 OpenStack IceHouse 2014 In this case, we used a dedicated Networking Node. This computer provided a complete

installation of OpenStack Neutron configured with OpenVSwitch in flat networking mode providing a complete

Software Defined Network solution for OpenStack. In this scenario all IMA architecture is installed in the Networking

Node.

MonPaaS uses Nagios as monitoring service which is a well-known, mature, and enterprise-class monitoring software. The

architecture of Nagios matches with the one depicted in Figure 2. Two Nagios extensions are used for carrying out active and

passive agent-based monitoring, respectively, NRPE
7
 and NSCA

8
. The extension for gathering the metrics from the hypervisor is

Nagios-Virt
9
. Moreover, the management interface for Nagios is NConf

10
, a web-based interface for performing the configuration

of Nagios. The scalable option is implemented by means of DNX
11

, another Nagios extension for enabling the distribution of the

monitoring platform. All these software pieces are already available and they have been used to implement the different modules

depicted in the architectures available in Figures 3 to 7.

Apart from OpenStack, Nagios and Nagios plugins, MonPaaS software is composed by different components which have been

designed and implemented by us to provide support for all the architectures described in this contribution. These new

components developed are our main contribution to the community and they are:

i) The “monitoring module” available in almost all the monitoring architectures with all the different business logics

described. This module is in charge among others of: Managing different Nagios instances; Reconfiguring Nagios

instances dynamically against topology changes; Deploying different monitoring VMs for each cloud consumers;

Synchronize security information; Etc.

ii) The VM image used in the External Monitoring Architectures. This image is ready to be used to populate the

Nagios monitoring services for the cloud consumers.

iii) The web interfaces required by some architecture like Condensed EMA in order to share security information with

the consumers required to access to the monitoring graphical interfaces.

iv) The scripts for performing the installation, configuration and deployment of the different architectures.

As a result, MonPaaS is a ready-to-use software package that enables the installation of any of the architectures described in this

contribution. MonPaaS is the evolution of a previous software contribution called IaaSMon
12

 which provides the following

architectures: Traditional IMA(p), Extended IMA(p) and Extended and Adaptive IMA(p),. This paper is the result of a significant

improvement in MonPaaS enabling us to compare different architectures empirically. Currently, MonPaaS provides support for

the following architectures: Traditional IMA(p), Extended IMA(p), Extended and Adaptive IMA(p), Concentrated EMA(c),

Concentrated EMA(c+p), Concentrated EMA(p), Extended and Adaptive IMA(p) + Concentrated EMA(c), Traditional IMA(p) +

Concentrated EMA(c), Extended IMA(p) + Concentrated EMA(c).

The installation of MonPaaS automatically installs Nagios 3.4.4, NConf 1.3.0, NRPE 2.13, and DNX 0.20.1 client and server.

Moreover, the installation also creates the new MonPaaS cloud consumer and uploads the MVM image to be used if required by

the architecture selected.

Along the fast development cycle of OpenStack, we have identified two different stages of OpenStack. Until Havana release

there were a traditional encapsulation done in the messages. After Havana release including Ice House and Juno, OpenStack is

using Oslo, a new framework for exchanging messages between OpenStack components. We have released two versions of

MonPaaS, one per pre-Havana releases and another one for post-Havana new released. The main intention is to demonstrate that

MonPaaS will work for future releases of OpenStack even with Neutron and advanced networking capabilities. The only

7 NRPE is available at http://exchange.nagios.org/directory/Addons/Monitoring-Agents /NRPE--2D-Nagios-Remote-Plugin-Executor/details

8 NSCA is available at http://exchange.nagios.org/directory/ Addons/Passive-Checks/NSCA--2D-Nagios-Service-Check-Acceptor /details

9 Nagios-Virt is available at http://people.redhat.com/~rjones/ nagios-virt/

10 NConf is available at http://www.nconf.org/

11 DNX is available at http://dnx.sourceforge.net/

12 IaaSMon is available at http://sourceforge.net/projects/iaasmon/

http://exchange.nagios.org/directory/Addons/Monitoring-Agents%20/NRPE--2D-Nagios-Remote-Plugin-Executor/details
http://exchange.nagios.org/directory/%20Addons/Passive-Checks/NSCA--2D-Nagios-Service-Check-Acceptor%20/details
http://people.redhat.com/~rjones/%20nagios-virt/
http://www.nconf.org/
http://dnx.sourceforge.net/
http://sourceforge.net/projects/iaasmon/

ELSEVIER – FUTURE GENERATION COMPUTER SCIENCE 14

requirement for MonPaaS to work in future releases is that there are not significant changes in the way in which the messages are

exchanged between components and also in the format of the current messages. Both are very reasonable assumptions at this

development stage of OpenStack, now becoming mature enough to keep at least the foundations stable enough to maintain the

compatibility with MonPaaS. Concretely, MonPaaS is inspecting the following internal messages: run_instance, object_action,

terminate_instance, service_update, report_state. So that if there are not significant changes in these messages MonPaaS will

support future releases of OpenStack.

It is worthy to mention the way in which we have addressed the communication between physical machines and virtual machines

when using Neutron since it provides a complete isolation layer between VMs and physical machines which differs with the

legacy direct communication enabled in Nova-Network. Neutron implements the isolation between tenants and between physical

machines using the so-called “IP Namespaces”. Thus, we have adapted Nagios and NConf to execute all the Nagios plug-ins to

gather metrics inside of the namespace associated to the VM being monitored. For example, the plug-in to ./check_ssh is

executed in the following way: ip netns exec $NET ./check_ssh $IPVM where $NET is the ip namespace where the VM is

running and $IPVM is the IP of such VM. These values are intercepted by MonPaaS and passes to NConf in order to configure

Nagios properly. This mechanism enables Nagios to communicate with VMs even when using Neutron and ensure

compatibilities with future releases of Neutron since this is the standard way to interacts with ip namespaces.

7. EMPIRICAL COMPARISON OF THE MONITORING ARCHITECTURES

In order to compare the different monitoring architectures, a set of experiments has been executed in a real cloud computing

architecture. This section has been divided in different subsections in order to describe the cloud computing infrastructure over

which the tests have been executed, the design of the test bed and the achieved empirical results.

7.1 Cloud Computing Infrastructure

The cloud computing infrastructure used to analyse empirically the performance of the monitoring architectures is composed by

one computer acting as cloud controller and seven computers acting as compute nodes. The compute nodes are 8 Bull R424-E3

blades, each one equipped by 2 processors Xeon ES-2650 2Ghz 20Mb/cache (8 cores each processor – 16 threads), 1TB SATA

III, 32 GB @ 1600Mhz. The cloud controller is a SunFire X2100 node equipped by 1 Dual Core AMD Opteron 1’8Ghz

1Mb/cache (2 cores), 2x256 SATA II, 8GM @1333Mhz. For the validation of the architecture with Neutron we used another

networking node with exactly the same specifications of the controller node, i.e. SunFure X2100. This hardware is wired with

two gigabit networks, one for management purposes and the other one for connectivity between the VMs. Both networks may be

used along the experiments depending on the architecture being used. The management network is connected by mean of a

switch D-Link DGS-3024 whereas the virtual connectivity network is connected by mean of a switch DELL PowerConnect

5448. The cloud controller has an extra gigabit interface to connect to Internet. We are using a clean installation of Linux CentOS

6.3 as base OS for all the nodes. It is not the intention of this paper to evaluate the performance of the different versions of

OpenStack. Thus, it has been used only one OpenStack installation, concretely Folsom release for more than 2 months full time

in order to achieve the empirical results provided in the next subsections.

7.2 Design of the Test bed

This test bed has not been designed to stress the different architectures in order to see how they work under stressing conditions.

In case the reader is interested in a complete and deep evaluation of stressing and scalability of both Extended and Adaptive

IMA(p) and Extended and Adaptive IMA(p) + Concentrated EMA(c), we encourage the reader to read our previous contributions,

Alcaraz et al. [3] and Gutierrez et al. [2] in which we respectively analysed them in detail using respectively, IaaSMon and a

previous version of MonPaaS. This test bed fixes the number of VMs to be created by means of a constant rate of VM creation

requests arrival to the cloud computing infrastructure. Each experiment has been executed on a different monitoring architecture

which is the only variable parameter between experiments. These conditions enable us to compare the behaviour of the different

monitoring architectures under the same conditions. The number of VMs has been fixed to 16 due to the fact that it is not

pursued the saturation of the physical resources of the infrastructure which may create interferences in the performance results of

the architectures. This number is big enough to calculate significant average times whereas it is small enough to do not provide

important overheads in the infrastructure. The VMs created are clean installation of Linux Ubuntu 12.10 in QCOW2 image

format with 512 MB, and 1 Core. The interval between arrivals of requests has been empirical adjusted for this cloud computing

infrastructure. Concretely, the architecture fails in the creation of at least 1 VM when this interval is less than 14 seconds, even

without any monitoring architecture running. This scenario represents a really stressing scenario for our cloud computing

infrastructure. So, this interval has been fixed to 17 seconds which may represent a normal working situation which is suitable

for comparing the architectures. Regarding the number of services to be monitored, they are also fixed to 10 services (HDD,

Ping Response Time, File I/O, Free Mem, etc.) for each physical or virtual resources registered in the monitoring service.

The fixed number of VMs can be created by a variable number of cloud consumers. The experiments have been run the with two

different scenarios, a scenario with 8 consumers, creating 2 VMs each one (referred in the figures as 8C-2VM) and another

ELSEVIER – FUTURE GENERATION COMPUTER SCIENCE 15

scenario with 2 consumers creating 8 VMs each one (referred as 2C-8VM). This enables us to see how the elasticity factor of the

EMAs affects to the performance of the monitoring service. These scenarios create in reality 16 VMs + 8 MVMs (24 VMs) and

16 VM + 2 MVMs (18 VMs), respectively. Note the difference in the total number of VMs created.

For EMAs, it is also important the sequential order in which the VM creation requests are received in the infrastructure. Notice

that the creation of the MVMs is done during the arrival of the first VM creation request for a given consumer. Thus, two

different scenarios have been identified. In the first scenario, referred henceforth as ALLVMS, all the VM creation requests for a

given consumers are sent before of starting the sending the VM creation requests for the next consumer, and so on. In the second

scenario, referred henceforth as ONEVM, the first VM is crated for all the consumers and then the second VM is created for all

the consumers, and so on. Notice the important difference of these two scenarios because the registering of the first VM inside of

the monitoring service requires an important delay due to the automatic elasticity performed in the monitoring architecture for

dynamic elastic approach, raising the creation of a new MVM.

All the architectures recommended in Table 4 have been run against this tested. The only exceptions are Extended and Adaptive

IMA(c+p) and Extended and Adaptive IMA(c). These architectures are not supported in MonPaaS due to the simple fact that

Nagios does not support natively multi-tenancy support which is required for providing services to the cloud consumer.

However, they may expose similar performance results than the provided by EAIMA(p) because they are exactly the same

monitoring architecture. The results presented in the next subsection are the average over the execution of each test bed 5 times

in order to get results statistically relevant.

7.3 Empirical Results

Figure 9 shows the experiment time for all the monitoring architectures analysed. The experiment time is defined as the time

elapsed between the arrival of the first VM creation request to the cloud computing infrastructure and the time in which the last

VM is responding with the first ICMP Echo Reply, i.e. ping. Moreover, it has been also included the experiment time for the

case in which there is not any monitoring architecture running in the system. This time is used to determine the overhead due to

the usage of a monitoring architecture in the cloud computing infrastructure. It is worthy of remark that all the architectures

expose similar experiment times and thus from the black box point of view, all of them are similar in terms of the overhead for

the cloud computing infrastructure. Concretely, the maximum difference i.e. the worst case corresponds to 6 s for Extended and

Adaptive IMA(p) + Concentrated EMA(c) and this is only an overhead around 2.8%. This is almost a negligible time. In fact, this

time is significantly reduced for the rest of architectures to less than 1.5%.

Figure 9.Overhead of the Cloud Computing Infrastructure due to the inclusion of a monitoring architecture. The experiment assumes an

ALLVMS order in the arrivals of requests. Moreover, it assumes a cold initialization.

For the analysis of performance associated to the monitoring architectures, it has been gathered the time until a VM response the

first ICMP Echo Request (VM Ping Response). It has also been gathered, if available, the time until a VM is registered in the

Nagios deployed for the cloud provider, and also if available, the time until a VM is registered in the Nagios deployed in the

cloud consumer. All these times are calculated with respect to the time in which the creation request for such VM arrived to the

cloud computing infrastructure. These times enables us to see the real performance of the monitoring architectures. It is

important to remark the difference between the two scenarios designed for the complete analysis of EMAs. So, the first scenario

is a scenario in which there is not any MVM running. This scenario is referred henceforth as cold initialization. So, the results of

the experiment in this scenario include as well the overhead imposed due to the auto-scaling of the monitoring architecture. The

other scenario, referred henceforth as hot state, has already running all the MVMs before of the start of the experiment and thus

there is not any auto-scaling action. The former may be good to analyse the response against scalability changes in the

monitoring infrastructure whereas the latter may be better to really measure the performance of the monitoring infrastructure. So,

Figure 10 and Figure 11 shows the average times gathered from all the 16 VMs created in the cold initialisation and the hot state

 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289

2C-8VM 8C-2VM

Ex
p

e
ri

m
e

n
t

Ti
m

e
 (

se
cs

)

Monitoring Overhead in Cloud Computing Infrastructure

No Mon.

Traditional IMA(p)

Extended and Adaptive IMA(p)

Concentrated EMA(c)

Extended and Adaptive IMA(p) - Concentrated EMA(c)

Traditional IMA(p) - Concentrated EMA(c)

ELSEVIER – FUTURE GENERATION COMPUTER SCIENCE 16

scenarios, respectively.

Figure 10. Performance Comparison of the different Monitoring architectures in a cold initialization scenario

As can be seen in Figure 10 and Figure 11, the VM Ping Response time is fluctuating between 21 and 35 seconds according to

the monitoring architecture used, the order in the arrivals of requests and the scenario chosen. These numbers can be used to

compare the overhead time imposed to the VMs in average due to the fact that the monitoring architecture is being executed. The

baseline over which compare is the VM Ping Response time where there is not any monitoring architecture (21.00 seconds in

average).

Also, It can be seen how there are some missing values in both figures. This is due to the fact that these values cannot be

calculated for the given architecture. For example, for Concentrated EMA(c) cannot be calculated the time related to the

registration in the cloud provider due to the fact that this architecture only provides services to the cloud consumer.

Thus, only makes sense to compare architectures which are comparable. Regarding IMAs analysed, i.e. Traditional IMA(p) and

Extended and Adaptive IMA(p), all of them follow a constant behaviour in all the experiments depicted in both figures.

Moreover, IMAs perform better than EMAs in all the cases depicted in Figure 10 where the auto-scaling times are also included.

Regarding EMAs, it can be seen in Figure 10 how EMAs expose a more significant overhead for the 8C-2VM scenario than for

the 2C-8VM scenario. This is due to the simple fact of the number of MVMs created in each scenario is different introducing an

important delay in the performance of such architectures due to the imposed delay associated to the auto-scaling time.

Moreover, it can be seen how EMAs perform better in ONEVM scenarios than in ALLVMS scenarios. In ONEVM the MVMs are

create at the very beginning of the experiment and then the overhead related to the instantiation of such MVMs is absorbed by the

infrastructure at the very beginning of the experiment so that this scenarios shift quickly to a hot state. However, in ALLVMS the

MVMs are creates at periodical intervals along the experiment, thus the overhead is available during almost all the experiment.

21.36 21.66 22.99 21.36 21.92

-

21.97 23.38

- -

38.51

-

38.61

-

38.52

 -
 10
 20
 30
 40
 50
 60
 70
 80

Concentrated
EMA(c)

Extended and
Adaptive IMA(p)

Extended and
Adaptive IMA(p) -

Concentrated
EMA(c)

Traditional IMA(p) Traditional IMA(p)
- Concentrated

EMA(c)

A
ve

ra
ge

 T
im

e
 (

se
cs

)

Cold Initialization in Scenario: 2C-8VM-ALLVMS

23.12 22.15 25.84
21.02 24.41

-

23.11
27.55

- -

70.16
77.24

72.12

 -

 10

 20

 30

 40

 50

 60

 70

 80

Concentrated
EMA(c)

Extended and
Adaptive IMA(p)

Extended and
Adaptive IMA(p) -

Concentrated
EMA(c)

Traditional IMA(p) Traditional IMA(p)
- Concentrated

EMA(c)

A
ve

ra
ge

 T
im

e
 (

se
cs

)

Cold Initialization in Scenario: 8C-2VM-ALLVMS

21.44 21.89 23.31 21.34 22.06

-

22.48 23.57

- -

30.40

-

33.47

-

31.77

 -
 10
 20
 30
 40
 50
 60
 70
 80

Concentrated
EMA(c)

Extended and
Adaptive IMA(p)

Extended and
Adaptive IMA(p) -

Concentrated
EMA(c)

Traditional IMA(p) Traditional IMA(p) -
Concentrated

EMA(c)

A
ve

ra
ge

 T
im

e
 (

se
cs

)

Cold Initialization in Scenario: 2C-8VM-ONEVM

25.44 21.69

35.18

21.18
30.95

-

22.75

37.81

- -

55.50

69.82
64.26

 -

 10

 20

 30

 40

 50

 60

 70

 80

Concentrated
EMA(c)

Extended and
Adaptive IMA(p)

Extended and
Adaptive IMA(p) -

Concentrated
EMA(c)

Traditional IMA(p) Traditional IMA(p) -
Concentrated

EMA(c)

A
ve

ra
ge

 T
im

e
 (

se
cs

)

Cold Initialization in Scenario: 8C-2VM-ONEVM

VM Ping Response VM Registered in Nagios (Cloud Provider) VM Registered in Nagios (Cloud Consumer)

21.46 21.95 23.00 21.41 21.72

-

22.51 23.09

- -

23.07

-

22.20

-

23.13

 -
 5

 10
 15
 20
 25
 30
 35
 40

Concentrated
EMA(c)

Extended and
Adaptive IMA(p)

Extended and
Adaptive IMA(p) -

Concentrated
EMA(c)

Traditional IMA(p) Traditional IMA(p) -
Concentrated

EMA(c)

A
ve

ra
ge

 T
im

e
 (

se
cs

)

Hot State in: 2C-8VM

24.47
21.75

25.22
21.17

23.89

-

22.52
27.22

- -

24.85

-

25.58

-

24.22

 -
 5

 10
 15
 20
 25
 30
 35
 40

Concentrated
EMA(c)

Extended and
Adaptive IMA(p)

Extended and
Adaptive IMA(p) -

Concentrated
EMA(c)

Traditional IMA(p) Traditional IMA(p) -
Concentrated

EMA(c)

A
ve

ra
ge

 T
im

e
 (

se
cs

)

Hot State in: 8C-2VM

VM Ping Response VM Registered in Nagios (Cloud Provider) VM Registered in Nagios (Cloud Consumer)

ELSEVIER – FUTURE GENERATION COMPUTER SCIENCE 17

Figure 11. Performance Comparison of the different Monitoring architectures in a hot state scenario

In Figure 11, it does not make sense to do a distinction between ALLVMS and ONEVM scenarios because all the MVMs are

already running. In hot state scenarios the performance of both IMA and EMA is almost similar for all the cases. In fact, it is

worthy to mentioning that EMAs acts in some scenarios better than IMAs, probably due to the innate scalability done over the

monitoring tasks in EMAs. Concretely, it can be seen how Concentrated EMA(c) performs better than Extended and Adaptive

IMA(p) in the Extended and Adaptive IMA(p)+Concentred EMA(c) entry available in Figure 11. To understand these results, it

is important to remark the fact that EMAs have associated as extra overheads the network latency and the virtualization layer and

despite of this issue, it provides better results. It is important to mention that if we compare the overhead times with respect the

VM Ping Response times for all the architectures, the monitoring overhead is around 7% for the worst cases and around 1% for

the best cases. These are really good numbers due to the fact that a VM which response to the first ping needs to do a lot of extra

tasks before of being ready for production. This time may be much more than this 7% and thus the monitoring architecture may

be monitoring such VM even before it starts in production.

8. RELATED WORKS

Surprisingly, the number of real downloadable monitoring solutions for cloud computing infrastructures is really scarce.

Tovarnak and Pitner [4] provide an architecture based on the installation of software agents inside of the VMs. This fact makes it

only suitable when providing monitoring services to the cloud consumer but not when providing monitoring services only to the

cloud provider. Rather than providing a complete architecture, they only focus on the design of the software agent. This solution

is similar the software agents used in Nagios, i.e. NRPE and NSCA. This contribution is also similar to the provided by Huang

and Wang [5] which is based on a software agent combining active and passive agent-based monitoring, i.e. the usage of both

NRPE and NSCA. Dhingra et al [6] and Ma et al [7] provide analogous monitoring architecture based on the installation of

software agents inside of the VMs, thus only suitable when providing services to the cloud consumer. This architecture gathers

also monitoring metrics directly from the hypervisor. Thus, this architecture frames perfectly in Extended and Adaptive IMA(c).

Selvi & Govindarajan [8] provide also a monitoring architecture based on software agents installed in the VMs. They install

gmon which is the software agent of Ganglia, other well-known enterprise-class monitoring software. This fact makes this

monitoring architecture only suitable when cloud consumers are aware of the monitoring architecture. In fact, gmon has been

designed for PMs and it does not fit well in cloud computing infrastructures, especially due to the fact that it is based on

multicast and it does not adapt well against of VMs destroy requests. So, this architecture may not be suitable for cloud

computing and in consequence it does not fit in any of the architectures proposed. Katsaos et al [9] provide an architecture

matching with Extended and Adaptive IMA +Sparse EMA or with Extended and Adaptive IMA +Concentrated EMA. This

architecture monitors metrics directly from the physical infrastructure and also uses VMs to perform the monitoring of

information. The architecture requires the usage of software agents inside of the VMs. This information is provided to both cloud

provider and cloud consumer. However, this architecture is designed in a private cloud scenario and thus this is not any

information about the users who are using the infrastructure. This is the reason for which we are not able to put the users in

parenthesis or to know if the EMA is Sparse EMA or Concentrated EMA. Andreolini et al [10] describe a distributed monitoring

architecture designed specifically for large information systems. This architecture use software agents, thus it is only suitable

when cloud consumers are aware of this architecture. This architecture uses multiple nodes for doing the workload balancing of

the monitoring tasks. So, it may fit in Extended and Adaptive IMA(c) with the optional scalability features configured.

VMDriver [11] is focused on implementing a novel transparent monitoring approach in which agents are not required and the

information is gathered by means of the hypervisor. This feature enables the cloud provider to get basic information about the

resources. This contribution is similar to the nagios-virt plugin used in Extended IMA to gather the metrics directly from the

hypervisor. VMDriver focus on providing more metrics from the hypervisor. Sandoval et al [12] analyse a number of existent

traditional monitoring tools to determine what is best choice is to be adapted to the monitoring of cloud computing

infrastructures. As a result, they indicate Nagios as the best alternative. In consonance with these authors, Nagios has been used

for all the deployments done in this contribution. Aceto et al [13] have recently provided a complete survey about monitoring

architectures for cloud computing. This survey describes a lot of commercial solutions like Amazon CloudWatch
13

, AzureWatch
14

and CloudKick
15

 now renamed as RackSpace Cloud Monitoring
16

, to name a few. However, these commercial vendors have not

published any information about the monitoring architecture describing how they implement the monitoring solutions internally.

However, we could describe their capabilities. So, Amazon CloudWatch does provide a basic management interface enabling not

only a predefined and closed set of metrics but also the configuration of customized metrics to the cloud consumer. AzureWatch

is based on agent-based monitoring and it is only focused on the cloud consumer. RackSpace Cloud Monitoring enables the

13 Amazon EC2 Cloud Watch is accessible at http://aws.amazon. com/es/cloudwatch/

14 Azure Watch is accessible at http://www.paraleap.com/ azurewatch

15 RackSpace CloudKick is accessible at http://www.rackspace.com/ cloudkick/

16 RackSpace Cloud Monitoring is accessible at http://www. rackspace.com/cloud/monitoring/

http://www.paraleap.com/%20azurewatch
http://www.rackspace.com/%20cloudkick/

ELSEVIER – FUTURE GENERATION COMPUTER SCIENCE 18

complete customization of the monitoring service including even the possible to monitoring external resources. In all these cases,

a good candidate for implementing these services in production is CEMA(c) or CEMA(c+p) which foster security and isolation

over any other feature. Aceto et al [13] also describe several open-source and commercial downloadable monitoring architectures

like OpenNebula Monitoring Subsystem [14], CloudStack ZenPack
17

, PCMONS [15], Sensu
18

 and Dargos [16], among others.

The OpenNebula monitoring software is very limited providing only information about the PMs (and not about the virtual ones).

Thus, it matches perfectly with Traditional IMA(p). CloudStack ZenPack and OpenStack ZenPack are plugins for Zenoss other

well-known enterprise-class monitoring software. They perform the monitoring of CloudStack and OpenStack cloud computing

infrastructures, respectively. The CloudStack plugin retrieves data about the IPs, Memory, CPU and HDD, providing in all the

case the total, available and used amounts whereas the OpenStack plugin retrieves information about the Exceptions, VM

Flavours, OS Images, Security Groups and Servers available in the infrastructure. These plugins do not perform the monitoring

of VMs. They match with IMA in both cases. Sensu is a monitoring architecture focused on inspecting the communication bus

used by the cloud computing infrastructure. Sensu follows the approach presents in many of the architecture described herein for

which a monitoring module is attached to the message queue. So, rather than being a concrete architecture, Sensu may be seen as

this architectural component available in all of them. PCMONS [15] provide a complete monitoring service based on Nagios.

PCMONS is designed only for private clouds and it is based on the usage of agents. PCMONS does not use any VM for

monitoring purposes and it also gathers information from the PMs. Thus, it matches with Extended and Adaptive IMA. GMonE

[17] provide monitoring services to both cloud provider and cloud consumer. GMonE is based on the explicit use of agents inside

of the VMs, thus this architecture is suitable in scenarios in which both users want to get monitoring services. Moreover, two

different monitoring services are provided to isolate the consumers from cloud provider. These architectures for both users are

similar with the only difference that the architecture for the cloud consumer does not gather any information about the PMs.

Thus, this architecture may fit with the hybrid Extended and Adaptive IMA(p)+ Extended and Adaptive IMA(c). This

combination makes sense, fostering the isolation between consumers and provider. Concretely, this combination has not been

included in this contribution for the simple fact that it very is similar to Extended and Adaptive IMA(p)+Concentrated EMA(c)

following a static approach for the elasticity of the infrastructure in which only 1 VM is used for providing monitoring services

to all the consumers. Dargos [16]
19

 also provides monitoring services to both cloud providers and consumers. It performs

transparent monitoring for gathering all the information form the VMs. Dargos does not provide any management interface for

the customization of the metrics gathered neither for the cloud consumer nor for the cloud provider. In fact, it uses the same

monitoring architecture to provide the service to both users. Thus, it may fit well with Extended IMA(c+p). Al-Hazmi et al [18]

provide a monitoring architecture focused on scenarios where different cloud providers are federated. This architecture is based

on the explicit use of agents and thus it is only suitable when the monitoring services are also provides to the cloud consumer.

This architecture also gathers information about the physical resources so that it fit in Extended and Adaptive IMA(c+p).

Koenig et al [19] provides a radically new approach focused on the elasticity of the monitoring platform. This architecture

matches with Extended and Adaptive IMA in a private cloud scenario. This approach is based on the complexity of the query

inserted to express the monitoring information wanted. The complexity of the query is used to determine the elastic factor of the

monitoring service. Thus, different VMs are used to perform the load balancing of such monitoring query rather than using the

number of cloud consumers or of VMs available. Ceilometer
20

 is the metering tool provided by OpenStack from Havana release.

It is very efficient collecting all the information about the status of OpenStack and the assignment of resources done in

OpenStack in order to lately use this information for metering purposes. From an architectural point of view, it could be similar

to an Extended and Adaptive IMA infrastructure. However, Ceilometer is not a traditional monitoring solution providing real-

time key performance metrics about the different physical and virtual resources available in the cloud infrastructure. It is just a

monitoring solution for providing information gathered by the different components of OpenStack in order to be lately used for

metering and billing purposes. In fact, recently there is a new OpenStack project entitled MONaaS
21

 Monitoring-as-a-Service

which tries to provide a solution like our proposed Sparse EMA architecture.

Table 5 shows a comparative analysis of all the monitoring solutions designed for cloud computing analysed in this section

against all the novel monitoring architectures proposed in this contribution. This table can help the reader to really see the

differentiating features of our contribution with respect to the current state of the art.

Table 5. Differentiation between the current state-of-the-art and all the monitoring architecture proposed

 Optional usage of Software

Agent (Required for fitting in

Cloud Scenarios)

Architecture

Published

Metric Customization

(Provider/Consumer)

Monitoring of Virtual

Infrastructure

(Provider/Consumer)

17 CloudStack ZenPack is available at http://wiki.zenoss.org/ ZenPack:CloudStack

18 Sonian Sensu is available at http://www.sonian.com/about/sensu/

19 Dargos is available at http://tl.ugr.es/dargos/
20 CeiloMeter is available at https://wiki.openstack.org/wiki/Ceilometer
21 MONaaS is available at https://wiki.openstack.org/wiki/MONaaS

http://wiki.zenoss.org/%20ZenPack:CloudStack
http://www.sonian.com/about/sensu/
http://tl.ugr.es/dargos/
https://wiki.openstack.org/wiki/Ceilometer

ELSEVIER – FUTURE GENERATION COMPUTER SCIENCE 19

Tovarnak and Pitner [4] No Yes No/No Yes/No

Huang and Wang [5] No Yes Yes/No Yes/No

Dhingra et al [6] No Yes Yes/No Yes/No

Ma et al [7] No Yes Yes/No Yes/No

Selvi & Govindarajan [8] No Yes Yes/No Yes/No

Katsaos et al [9] No Yes Yes/No Yes/No

Andreolini et al [10] No Yes Yes/No Yes/No

VMDriver [11] Yes N/A No/No Yes/Yes

Amazon CloudWatch Yes No ?/No ?/Yes

AzureWatch Yes No ?/No ?/Yes

CloudKick Yes No ?/No ?/Yes

OpenNebula Monitoring Subsystem Yes No Yes/No No/No

CloudStack ZenPack Yes No Yes/No No/No

OpenStack ZenPack Yes No Yes/No No/No

Sensu Yes No No/No No/No

PCMONS [15] No Yes No No

Dargos [16] Yes Yes Yes/No Yes/Yes

GMonE [17] No Yes No No

Hazmi et al [18] No Yes No No

Koenig et al [19] No Yes Yes/No Yes/Yes

OpenStack MONaaS Yes Yes No/Yes No/Yes

MonPaaS IMA Yes Yes (here) Yes/No Yes/No

MonPaaS EIMA Yes Yes (here) Yes/Yes Yes/Yes

MonPaaS EAIMA Yes Yes (here) Yes/Yes Yes/Yes

MonPaaS SEMA Yes Yes (here) Yes/Yes Yes/Yes

MonPaaS CEMA Yes Yes (here) Yes/Yes Yes/Yes

9. CONCLUSIONS

A significant number of architectures for monitoring cloud computing infrastructures have been provided in this contribution. A

novel taxonomy for monitoring architectures in cloud computing has been provided. These architectures have been analysed by

means of an exhaustive comparative analysis. This analysis has led to a recommendation of the best monitoring alternatives for a

significant number of realistic scenarios. Concretely, it is recommended the usage Extended and Adaptive IMA(c+p) for

scenarios in which is pursued the maximization of performance and the usage of Extended and Adaptive IMA(p) + Concentrated

EMA(c) for scenarios in which is pursued the maximization of security and isolation. A complete empirical evaluation has been

also done against a real cloud computing infrastructure in order to validate empirically the performance of the architectures by

means of the execution of more than 1000 VMs. These results have shown how both IMAs and EMAs provide similar

performance capabilities in a hot state. However, EMAs are much slower when they have to auto-scale the monitoring

architecture. On the other hand, EMAs offer better security and scalabilities alternatives in comparison with IMAs.

As future work, we want to shift from Nagios to another monitoring tool which provides multi-tenancy support. We would also

like to explore new monitoring architectures with support for performing an auto-scaling of the architecture when overhead.

ACKNOWLEDGEMENTS

This research work has partially been supported and funded by the grant “A case on Cloud-based Mobile Network Infrastructure

Sharing in UAE” funded by Zayed University, United Arab Emirates and by the grant “Research on Key Technologies of

Energy-saving Resource Integration and Task Scheduling for Green Cloud Computing” with reference 61472192 sponsored by

the National Natural Science Foundation of China. The project has also been actively supported by Wuxi Chigoo Interactive

Technology, Co. Ltd (China) under the research agreement “Service-Oriented Cloud Information Centre for Airport Services”.

Finally, authors wish also to acknowledge the help provided by Enrique Chirivella Perez during the deployment of OpenStack

IceHouse used to validate the architecture proposed herein.

REFERENCES

[1] P. Mell, T. Grance. “The NIST Definition of Cloud Computing”, REF 800-145. Available at http://csrc.nist.gov/publications/nistpubs/800-145/SP800-

145.pdf
[2] J. Gutierrez Aguado, J. M. Alcaraz Calero and Wladimiro Diaz Villanueva, «IaaSMon: Framework for Monitoring Cloud Computing Datacenters,» Jounal

of Grid Computing (submitted), 2014.

[3] J. M. Alcaraz Calero and J. Gutierrez Aguado, «MonPaaS: An Adaptive Monitoring Platform as a Service for Cloud Computing Infrastructures and
Services,» IEEE Transaction on Service Computing (to appear), 2015.

[4] D. Tovarnak and T. Pitner, «Towards Multi-Tenant and Interoperable Monitoring of Virtual Machines in Cloud,» de 2012 14th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing, Timisoara, Romania, 2012.

[5] H. Huang and L. Wang, «P&P: a Combined Push-Pull Model for Resource Monitoring in Cloud Computing Environment,» de 2010 IEEE 3rd International

Conference on Cloud Computing, Miami, USA, 2010.
[6] M. Dhingra, J. Lakshmi and S. K. Nandy, «Resource Usage Monitoring in Clouds,» de ACM/IEEE 13th International Conference on Grid Computing,

Beijing, China, 2012.

ELSEVIER – FUTURE GENERATION COMPUTER SCIENCE 20

[7] K. Ma, R. Su and A. Abraham, «Toward a lightweight framework for monitoring public clouds,» de Fourth International Conference on Computational

Aspects of Social Networks (CASoN), San Carlos, Brazil, 2012.
[8] T. Selvi and K. Govindarajan, «Cloud Monitoring and Discovery Service (CMDS) for IaaS resources,» de Cloud Monitoring and Discovery Service

(CMDS) for IaaS resources, Chrometet, Chennai, 2011.

[9] G. Katsaros, G. Kousiouris, S. V. Gogouvitis, D. Kyriazis, A. Menychtas and T. Varvarigou, «A Self-adaptive hierarchical monitoring mechanism for
Clouds,» Journal of Systems and Software, vol. 85, pp. 1029-1041, 2012.

[10] M. Andreolini, M. Colajanni and M. Piet, «A Scalable Architecture for Real-Time Monitoring of Large Information Systems,» de Second Symposium on

Network Cloud Computing and Applications, London, UK, 2012.
[11] G. Xiang, H. Jin, D. Zou and X. Zhang, «VMDriver: A Driver-based Monitoring Mechanism for Virtualization,» de 29th IEEE International Symposium on

Reliable Distributed Systems, Delhi, India, 2010.

[12] Y. Sandoval, G. Gallizo and M. Curiel, «Evaluation of Monitoring Tools for Cloud Computing,» de XXXVIII Conferencia Latinoamericana en Informatica
(CLEI), Medellin, Colombia, 2012.

[13] G. Aceto, A. Botta, W. de Donato and A. Pescapè, «Cloud monitoring: A survey,» Computer Networks, vol. 57, p. 2093–2115, 2013.

[14] D. Milojičić, I. Llorente and R. S. Montero, «OpenNebula: A Cloud Management Tool,» IEEE Internet Computing, vol. 15, n. 2, pp. 11-14, 2011.
[15] S. Aparecida de Chaves, R. Brundo Uriarte y C. Becker Westphall, «Toward an Architecture for Monitoring Private Clouds,» IEEE Communication

Maganize, vol. 49, n. 12, pp. 130-137, 2009.

[16] J. Povedano-Molina, J. M. Lopez-Vega, J. M. Lopez-Soler, A. Corradi and L. Foschini, «DARGOS: A highly adaptable and scalable monitoring
architecture for multi-tenant Clouds,» Future Generation Computer Systems, vol. 29, n. 8, pp. 2041-2056, 2013., 2013.

[17] J. Montesa, A. Sánchez, B. Memishic, M. S. Pérez and G. Antoniu, «GMonE: A complete approach to cloud monitoring,» Future Generation Compute

System, vol. 29, n. 8, pp. 2026-2040, 2013.
[18] Y. Al-Hazmi, K. Campowsky and M. Thomas, «A Monitoring System for Federated Clouds,» de 1st International Conference on Cloud Networking, Paris,

France, 2012.

[19] B. Koenig, J. M. Alcaraz Calero and J. Kirchnick, «Elastic Monitoring Framework for Cloud Infrastructures,» IET Communications, vol. 6, n. 10, pp.
1306-1315 , 2011.

